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Abstract

The aim of this thesis is to give the reader a gentle but thorough introduction to the
vast web of ideas underlying the realization of the geometric Langlands correspon-
dence in the physics of quantum field theory (QFT). It begins with a pedagogically-
motivated introduction to the relevant concepts in the Langlands program, physics,
and gauge theory for an audience of mathematicians or physicists. With this ma-
chinery in place, the more complicated phenomena associated with gauge theory is
explored, specifically instantons, topological operators, and electric-magnetic duality.
We conclude by connecting the ideas of the Langlands correspondence discussed in the
first chapter with phenomena in topologically twisted N = 4 supersymmetric Yang-
Mills theory (SYM) which exhibits a striking property known as S-duality. A large
part of the goal of this thesis is to give an exposition to the language and techniques
that the literature related to this topic already assumes familiarity with, so that an
advanced undergraduate or early graduate student might have a good exposition into
this field.
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Chapter 1

Introduction and Overview of the
Langlands Program

The aim of this chapter is to give a conceptual and historical overview of the Lang-
lands program from both its original number-theoretic setting as well as its geometric
analogue. The goal is not so much to develop any mathematical background so much
as to illustrate to the reader why this great web of ideas is important. This chapter
is more technical than those that follow.

The following two sections are adopted from the lectures and notes of [1]. The
third and fourth are motivations adopted from the first lecture of [2] together with
various ideas of [1].

1.1 The Langlands Program in Number Theory

Fermat’s Last Theorem, once known as the “greatest unsolved problem in mathemat-
ics,” asserts that there does not exist an integral solution to

an + bn = cn, n > 2 (1.1)

with abc 6= 0.
The proof of Fermat’s last theorem relied on some of the most intricate mathemat-

ics developed at the end of the 20th century. A crucial step towards its completion
was put forward by Frey and made rigorous by Ribet and Serre. They showed that
if the triple (a, b, c) was a solution to (1.1) for an odd prime n = p (which one might
assume without loss of generality), then the so-called Frey curve y2 = x(x−ap)(x+bp)
gives a contradiction to the following theorem, now known as the Modularity theorem
for Elliptic Curves.

Theorem 1.1.1 (Taniyama–Shimura–Weil). Every elliptic curve is modular.

We will not aim to understand what it means here for an elliptic curve to be
modular. What is important is that Fermat’s last theorem follows from the modularity
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theorem1. The modularity conjecture for elliptic curves turns out to follow from a
special case of a special case of the Langlands conjectures, originally formulated by
Robert Langlands in a letter to Andre Weil in 1967 [4]. More precisely, it is a corollary
of the Langlands correspondence for G = GL2 over Q. This part of the Langlands
conjecture remains unproven as of the present day.

We give a sketch of the statement of the number-theoretic Langlands correspon-
dence, intended towards an audience with some background in Galois theory and the
language of adeles.

Begin by considering the absolute Galois group of the rationals:

Gal(Q/Q),

where Q is the algebraic closure of Q, consisting of all algebraic numbers. This
Galois group is tremendously large. It is the profinite group obtained as an inverse
limit over all finite Galois extensions of Q. As an example of its size and complexity,
the following is an open conjecture about this group.

Conjecture 1.1.2 (Inverse Galois). Every finite group is contained in Gal(Q/Q).

The number theoretic Langlands correspondence considers the n-dimensional rep-
resentations of the absolute Galois group (called Galois representations) and relates
them to certain representations known as automorphic representations. To define
these latter types of representations, we first make the definition

Definition 1.1.3 (Ring of adeles). The ring of adeles of Q is defined as

AQ := R×
res∏

p prime

Qp,

where Qp denotes the p-adic completion of the rationals (for an introductory text
to the p-adic numbers and valuation theory, see [5]). Here R can be viewed as the
completion at p =∞ and the above product is restricted in the sense that:

res∏
p prime

Qp :=

{
(xp) ∈

∏
p prime

Qp | xp ∈ Zp for all but finitely many p

}
.

Let GLn(AQ) denote the set of n×n matrices with entries in AQ. Because Q ↪→ AQ
diagonally, we have

GLn(Q) ↪→ GLn(AQ)

1In fact, the modularity theorem is strictly stronger than necessary. It was enough for Wiles and
Taylor to prove that a special family (the so-called semistable ones) of elliptic curves is modular.
The case for general elliptic curves has since been proven by Breuil, Conrad, Diamond, and Taylor
[3].
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which yields a left (and right) action2:

GLn(Q)	GLn(AQ)�GLn(Q).

The quotient by the left action GLn(Q)\GLn(AQ) is well-defined as a topological
space in this case. Because GLn(Q) still acts by right action on this space, functions
of this space form a (left) representation of GLn(Q)

GLn(Q)	Fun (GLn(Q)\GLn(AQ)) .

This can be decomposed into irreducible representations, which are known as the
automorphic representations of GLn(Q). Though not absolutely precise, this is
a good first-order description of what an automorphic representation is.

Idea 1.1.4. The Langlands correspondence associates to each n-dimensional repre-
sentation of the absolute Galois group Gal(Q/Q) an automorphic representation of
GLn(Q).

More than just a bijection of sets, though, the Langlands correspondence states
that a certain set of eigenvalue data must agree on both sides.

From the perspective of the absolute Galois group (henceforth referred to as the
Galois side), this eigenvalue data for a given Galois representation is the Frobenius
eigenvalues of the representation. The Frobenius automorphism x → xp is the
generator of the Galois group of any finite extension Gal(Fq/Fp). For p an unramified
prime in the Galois representation, one can lift the Frobenius automorphism to a
conjugacy class. The eigenvalues (well-defined for a given conjugacy class) of these
elements are the Frobenius eigenvalues of that representation.

From the perspective of the automorphic representations (henceforth referred to
as the automorphic side), the eigenvalue data is more difficult to describe. It relies
on the construction of linear operators on the space of automorphic representations
known as Hecke Operators. Though a full description of the Hecke eigendata is
beyond the scope of this paper, we can give a rough and “cartoonish” picture of the
most basic case of Hecke eigenvalues (c.f. [6, 7] for a deeper exposition). In the GL2

case, the space of automorphic representations is related to the space of modular
forms on the upper half plane corresponding to quotients Γ\H with Γ a special type
of discrete subgroup of SL2(Z).

When Γ = SL2(Z), a modular form of weight k can be interpretted as a function
f on the set of lattices in R2 so that f(aΛ) = a−kf(Λ). The mth Hecke operator is
then defined as:

Tmf(Λ) := mk−1
∑
Λ′⊆Λ

sublattice
of index m

f(Λ′).

These are pairwise-commuting linear operators, and can thus be simultaneously di-
agonalized. The modular forms that are eigenvectors for this operator are known as

2In this paper we shall use G
	
X to denote left action of G on X and X

�
G to denote right

action.
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Hecke eigenforms, and their eigenvalue data is what we define as the Hecke eigen-
values of that representation. The story for more general subgroups Γ ⊆ SL2(Z) gives
an analogous construction but the story becomes much more involved beyond the GL2

case.
With this bare background laid out, we can make at least a parsable statement of

the Langlands conjecture.

Conjecture 1.1.5 (Langlands). To each n-dimensional representation of the absolute
Galois group, there is a corresponding automorphic representation of GLn(Q) so that
the Frobenius eigenvalues of the Galois representation agree with the Hecke eigenvalues
of the automorphic representation.

It is worth mentioning that the Langlands conjecture over G = GL1 is the same
as what is known in number theory as class field theory [8].

Many questions in number theory can be formulated in terms of questions about
the nature of the absolute Galois group. On the other hand, automorphic representa-
tions can be studied using analytic methods, which would imply that deep number-
theoretic data can be made accessible by studying these analytic objects.

The eigenvalue data plays a particularly important role both in the Langlands
correspondence and its geometric analogue. The study of this eigenvalue data will
become the study of the Satake symmetries acting on both sides of the Langlands
equivalence. This thesis will explore how ideas from physics can give a concrete
realization of the eigenvalue data in the geometric Langlands setting in terms of
operator insertions in quantum field theory [9].

1.2 Weil’s Rosetta Stone

The Langlands correspondence in number theory also has a close analogy for curves
defined over finite fields Fq.

We will study this analogy to function fields over Fq to motivate the translation
of the Langlands program to a more geometric setting. Consider the 1-dimensional
affine space A1(Fq). We take F := Fq(t) the function field of the affine line A1(Fq).
This will play the role analogous to the role of Q before. Before, we could complete
Q at each prime p to get the p-adics and within the p-adics, we had the ring of p-adic
integers Zp. For each point x ∈ A1(Fq), there is a notion of a completion for Fq(t) at
x, and also a notion of a ring of integers corresponding to the localization Ox at x.

To understand these completions, we make the following definitions.

Definition 1.2.1 (Formal Power Series). Let k[t] be a polynomial ring in one variable
over a field k. The ring of formal power series around x, k[[t− x]], is defined as
the ring of all (possibly infinite) series of the form

∞∑
n=0

an(t− x)n,

Note. There is no restriction in this ring that only finitely many an are nonzero.

4



Definition 1.2.2 (Formal Laurent Series). Let k[t] be a polynomial ring in one
variable over a field k. The ring of formal Laurent series around x, k((t− x)), is
defined as the ring of all (possibly infinite) series of the form

∞∑
n=−∞

an(t− x)n,

where only finitely many an for n < 0 can be nonzero.

The field Fx corresponding to the completion of F at x can be viewed as the field
of Laurent series around x, denoted Fq((t− x)). Ox can similarly be viewed in terms
of formal power series at x, Fq[[t− x]]. With these definitions in place, we can define
the ring of adeles analogously to before.

Definition 1.2.3 (Adele Ring for Fq(t)). The ring of adeles of Fq(t) is defined as

AFq(t) :=
res∏

x∈P1(Fq)

Fq((t− x))

and the above product is restricted as before in the sense that all but finitely many
terms in this product over x lie in Fq[[t − x]]. Here the completion at the point at
infinity corresponds to Fq((1/t)).

We naturally have that

OFq :=
∏

x∈P1(Fq)

Fq[[t− x]]

sits inside AFq(z).
All of this can be generalized to the function field F for a curve C over Fp. Here,

ramification of various points on the curve becomes an issue and there is more subtlety
in defining many of the above concepts. Working over a curve C in this picture would
correspond to working in some number field in an extension of Q in the original
Langlands conjecture.

For a function field of a curve C, the analogue of the Galois group in the unramified
case is known to be the étale fundamental group, and a Galois representation
would be a representation of πét

1 (C, x) → GLn in the unramified case. In analytic
language for C a complex curve, the étale fundamental group becomes the usual
π1 and a Galois representation becomes a representation of the fundamental group
π1(C)→ GLn.

In the unramified case, automorphic representations correspond exactly to the
GLn(OF )-invariant functions on GLn(F )\GLn(AF ), i.e.

Fun (GLn(F )\GLn(AF )/GLn(OF )) .

The following theorem of Weil will be crucial to us in making a connection with
the geometric setting over C.
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Theorem 1.2.4 (Weil Uniformization). Take F the function field for a curve C over
Fq. There is a canonical bijection as sets between

G(F )\G(AF )/G(OF )

and the set of G-bundles3 over C. Moreover, there exists an algebraic stack denoted
by BunG(C) whose set of Fq points are in canonical bijective correspondence with this
set.

Thus (in the unramified case), the automorphic side is captured by functions on
BunG(C,Fq). This set of functions admits an action by the spherical Hecke algebra
at every closed point x ∈ C, defined as the space of compactly supported functions
on the double coset space:

Hx := Func(GLn(Ox)\GLn(Fx)/GLn(Ox))

with multiplication given by an operation known as a convolution product of func-
tions. These algebras correspond to the Hecke operators described earlier. The actions
of these algebras at different x commute with one another, just like the Hecke oper-
ators mentioned in the previous section. Consequently, they can be simultaneously
diagonalized to give rise to eigenfunctions generalizing the notion of Hecke eigenforms
in the modular form setting of the GL2 case. These operators yield Hecke eigen-
function objects on BunG. In a more formal algebraic setting, related objects known
as Hecke-eigensheaves are the associated objects of study4. This thesis will aim to
explore the corresponding interpretation of this action in the context of topological
field theory in physics.

Table 1.1, based off of [1] and [11], captures the analogy described above. This is
the function field analogy, otherwise known as Weil’s Rosetta stone.

It is the hope and goal of this correspondence that the extremely difficult number-
theoretic Langlands program might become more accessible when phrased in the
language of the second or third columns of Table 1.1. A reason to believe this might be
so is because in this setting, there is powerful machinery stemming from the algebraic
geometry developed by Grothendieck, Serre, Deligne, and others. This becomes a
prominent force for driving our understanding of columns two and three.

The analogy between columns one and two is especially strong, and in many cases
a statement about the second column can be exactly translated over into a statement
about the first.

We are now in a place where we can attempt to discuss and motivate the third
column: the geometric Langlands correspondence over C. To do this, we will begin
with motivation from a different direction, namely Fourier analysis.

3G-bundles are discussed in Section 3.1.3.
4For an explanation about the transition between functions on this coset space and sheaves, see

a reference on the function-sheaf correspondence, e.g. [10].
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Number Theory Curves over Fq Riemann Surfaces

Z ⊂ Q Fq[t] ⊂ Fq(t) OholC ⊂ OmerC
SpecZ A1

Fq A1
C = C

SpecZ ∪ {∞} P1
Fq (projective line) CP1 (Riemann sphere)

p prime number x ∈ A1
Fq x ∈ C

Zp (p-adic integers) Fq[[t− x]] power series around x C[[z − x]] holomorphic on
formal disk around x

Qp (p-adic numbers) Fq((t− x)) Laurent series
around x

C((z − x)) holomorphic on
punctured formal disk

around x
AQ (adeles) AFq function field adeles

∏res
x∈CC((z − x)) restricted

product of functions on all
punctured disks, with all

but finitely many
extending to the
unpunctured disk

F/Q (number fields) F/Fq(t) or Fq(C)/Fq(P1) C → CP1 (branched
covers)

Gal(F/F ) Gal(F/F ) = πét
1 (SpecF, SpecF )

� Gal(F unr/F ) = πét
1 (C, x) π1(C, x)

Table 1.1: Weil’s Rosetta stone

1.3 The Fourier Transform and Pontryagin Dual-

ity

In this section, we will attempt to give an alternative motivation for the geometric
Langlands program as a generalized non-abelian analogue of the Fourier transform.

First let us begin by working with a locally-compact abelian group G. Recall that
these possess a unique (normalized) Haar measure. We make the following definition:

Definition 1.3.1 (Unitary Character). ForG locally-compact and abelian, a unitary
character of G is a group homomorphism χ : G→ U(1).

Using this definition, we define the following group, which plays a role as a dual
to G. It is called the Pontryagin dual.

Definition 1.3.2. The set of all unitary characters χ, together with multiplication
χ1 · χ2 ∈ Hom(G,U(1)) given by pointwise multiplication of characters, form an

abelian group, denoted by Ĝ.

Example 1.3.3. We have the following examples:

1. Let G = S1, then the space of unitary characters consists precisely of these of
the form einx : G→ U(1). This makes Ĝ = Z.

7



2. Let G = Z, then χ(1) determines the representation uniquely, and so Ĝ = U(1).

3. Let G = R, then eikx : R→ U(1) is free to have k vary over R so Ĝ = R.

Notice in all these cases that
̂̂
G ∼= G. This is in fact true more generally, and we

have the following theorem:

Theorem 1.3.4 (Pontryagin Duality). For any locally-compact abelian topological
group G, the map

G→ ̂̂
G

g 7→ [χ 7→ χ(g)]

is a canonical isomorphism.

Observation 1.3.5. The space of functions5 on G, Fun(G) has a basis given by
characters.

Example 1.3.6. We have the following examples:

1. f : S1 → C has f(θ) =
∑

n ane
inθ. This is known as the Fourier series.

2. f : Z → C has f(n) =
∫ 2π

0
F (θ)einθ. This is known as the discrete time

Fourier series.

3. f : R→ R has f(x) =
∫∞
−∞ f̂(k)eikx. This is known as the Fourier transform.

Let us now try to generalize the ideas of the Fourier transform further. It is useful
to view the Fourier transform as letting us see two different sides of the same object.
Consider the direct product of the group G and Ĝ. There is a unique function on this
space, which we can call the kernel K : G × Ĝ → C defined by K(g, χ) = χ(g). In

the case of G = R, this function is exactly eikx, x ∈ R, k ∈ R̂ = R, that is viewed as
a function on both time and frequency space.

This space comes with two obvious projections.

G× Ĝ

G Ĝ

πG πĜ

Any function f on G can be “pulled back” to a function f ′ on G × Ĝ, namely by
ignoring the second component f ′(g, ĝ) = f(g). We will denote this pulled back
function by π∗Gf = f ◦ πG.

Further, a suitable distribution on G × Ĝ can be “pushed forward” to either G
or Ĝ by integrating it over Ĝ or G respectively. We will denote these by (πG)∗ and
(πĜ)∗, again respectively.

5By this, we don’t mean L2(G). Fun(G) can be taken to mean the space of tempered distributions
on G, defined as the continuous linear dual of the Schwartz space of functions. See [12].
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Now if f̂ is a distribution on Ĝ, we get that π∗
Ĝ
f̂ is a distribution on G× Ĝ. This

can be pushed forward to a function on G by integrating over the Ĝ coordinates, but
because π∗

Ĝ
f̂ is constant on the G-coordinate, this function will just be a constant

independent of G.
On the other hand, if we look at:

f(g) := (πG)∗([πĜ
∗f̂ ]K) =

∫
χ∈Ĝ

[(f̂ ◦ πĜ)(g, χ)]K(g, χ) dχ (1.2)

we obtain exactly the Fourier transform. For G = R this gives us:

f(x) =

∫
R
f̂(k)eikxdk. (1.3)

The reason that the Fourier transform finds so much use in practice is that it
serves as an eigendecomposition for the derivative operator. On Rn, the eigenfunc-

tions of this operator are plane waves ei
~k·~x. These are eigenfunctions both of ∂x and

also of the translation operator ~x 7→ ~x+ ~y. Any abelian group acts on itself by trans-
lation6. Consequently, this yields a G action on the functions living on G, Fun(G),
by translation f(x)→ f(x− y). Note however that the unitary characters satisfy:

y · χ(x) = χ(x− y) = χ(−y)χ(x)

so that the characters diagonalize the translation operator as an eigenbasis, exactly
as eikx do on the real line.

Fact 1.3.7. The Fourier transform diagonalizes the translation action of G on the
space of functions L2(G) ∼= L2(Ĝ).

We have just treated Fourier analysis successfully for the category of locally-
compact abelian groups. A natural next question is:

Question. How could we build upon the ideas Fourier analysis to generalize to non-
abelian groups? That is, what could be the non-abelian analogue of the Fourier
transform?

Already, one can see that the naive ideas from before will not hold up as well.
For one, translation operators no longer commute, and hence cannot be simultane-
ously diagonalizable with an eigenbasis of unitary characters. As we move to explore
the continuous non-abelian setting, the role of the Pontryagin dual group Ĝ will be
replaced by an object known as the Langlands dual group Ǧ, to be discussed in
more detail in Chapter 6.

Before we ask about the non-abelian case, it will be worthwhile to study how the
Fourier transform can be understood algebraically. It will turn out that to under-
stand the Fourier transform from an algebraic perspective, we will have to appeal to
categorification, which in recent years has proved crucial in many fruitful applications.

6Note that right and left translation action coincide for an abelian group.
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1.4 Categorical Harmonic Analysis and Geometric

Langlands

As a motivating example of both the algebraic perspective and the idea of categori-
fication mentioned in the previous chapter, we will illustrate the Fourier-Mukai
transform. We will assume basic familiarity with the language of line bundles.

When viewing G as an object in a topological setting, namely as a topological
space equipped with Haar measure, we consider the space of functions on G, Fun(G).
In an algebraic context, the study of functions on G is often replaced by instead
studying line bundles, vector bundles, or more generally (quasi-coherent) sheaves7.

Let A be an abelian variety, namely a complex torus of the form A = Cg/Λ such
that A is also a projective variety. A is called abelian because it is endowed with the
group structure of this torus. We thus have a multiplication operation (along with
the two projections):

A× A

A A A

π1 µ π2

Just like functions, line bundles can be pulled back along maps between varieties.
Given a line bundle L on A, µ∗L, π∗1L, π∗2L all give line bundles on A× A.

A geometric character is a line bundle L on A such that µ∗L = π∗1L ⊗ π∗2L.
This means that for geometric characters, there is a canonical isomorphism between
Lx+y and Lx ⊗ Ly given by restricting µ∗L to (x, y) ∈ A × A and noting that by
definition, this must equal Lx ⊗ Ly.

Further, multiplication by an element x gives a map µx : A → A which is the
same as restricting µ to {x} × A. Consequently, for a geometric character

µ∗xL = Lx ⊗ L.

That is, the group action acts on geometric characters by tensoring each fiber with
the 1D vector space (stalk) of L at x, Lx. Equivalently, it acts on the line bundle
by tensoring it with the trivial line bundle with fiber canonically isomorphic to Lx.
Note the similarity between this property of geometric characters and the property
of ordinary characters from before, namely y · eikx = eik(x−y) = e−ikyeikx.

It turns out that the set of geometric characters on A together with the commu-
tative operation ⊗ forms an abelian variety known as the dual abelian variety to
A. This is denoted by

A∨ := ({geometric characters},⊗).

7We will not attempt to give proper exposition to quasi-coherent sheaves or related objects. For
a physicist, a good first-order intuition for coherent sheaves is to think of them as a generalization
of vector bundle, where rank is no longer assumed to be constant but can increase on certain sub-
manifolds. Quasi-coherent sheaves then include the possibility for infinite rank of these bundles.
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From our birds-eye view of what is going on, it looks like A∨ is playing an analogous
role to Ĝ of the previous chapter. We have as before the simple diagram

A× A∨

A A∨
π1

π2

Just as on G× Ĝ there was a universal function K called the kernel from which the
Fourier transform was defined, on A × A∨ there is a universal bundle known as the
Poincaré line bundle P defined so that:

P(x,L) = Lx.

Note that a geometric character L on A would not correspond to a line bundle on
A∨ but instead to an object with a single fiber at L ∈ A∨ that is zero at all other
points. In more precise language, this would be the skyscraper sheaf8 of L on A∨.
Indeed, the natural objects to consider in place of functions/distributions on G, Ĝ
are not line bundles on A,A∨ but rather objects known as quasi-coherent sheaves on
these spaces. For a reference about these objects, see [13].

Concept 1.4.1 (Fourier-Mukai Transform). The Fourier-Mukai Transform is a map
between the categories of quasi-coherent sheaves:

FM : QC(A∨)→ QC(A).

In terms of the language above, it is given by:

F 7→ (π1)∗([π
∗
2F ]⊗ P).

Note the similarity between this and the “classical” or “decategorified” Equation (1.2).
In particular the skyscraper sheaf of L in A∨, denoted OL, is mapped to

(π1)∗([π
∗
2OL]⊗ P) = L.

Various correspondences of this categorification are given in Table 1.2. Note in
particular how scalars become vector spaces, and how vector spaces become categories.

Everything so far discussed has been about abelian groups, though we have man-
aged to use this categorified language to arrive at an algebraic picture of the Fourier
transform in this setting. This will at least give us some motivation to give a state-
ment of the categorical geometric Langlands conjecture. In the Langlands program,
we have G a reductive algebraic group.

8A skyscraper sheaf Ox at a point x can naively be thought of as a vector bundle that is rank zero
everywhere except for a single point x where it has rank 1. It plays the same role in the algebraic
setting as the Dirac delta does in the analytic one.
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number → line
functions on G → line bundles on A

vector space of functions/distributions → category of quasi-coherent sheaves
translations g : G→ G → translations µx : A→ A

{eikx}k∈Ĝ eigenbasis for translations → {L}L∈A∨ eigenbasis for translations
eigenvector multiplied by a number → eigen-bundle tensored with a line bundle

eik(x+y) = eikxeiky → Lx+y
∼= Lx ⊗ Ly

delta function → skyscraper sheaf

{eikx} on G is a delta function on Ĝ → L on A is a skyscraper sheaf on A∨

Table 1.2: The categorification associated to the Fourier-Mukai transform

Our discussion of the Fourier-Mukai transform would naively lead us to formulate
some sort of duality transformation taking us from quasi-coherent sheaves on G to
quasi-coherent sheaves on some dual group Ǧ. Because the group multiplication
is not abelian, the arguments we have used above will not translate. The correct
generalization is more subtle, and the principal geometric objects of study are not G
and Ǧ themselves.

Abelian (classical) Non-abelian (categorified)

Space of “functions” Fun(G) ∼= Fun(Ĝ) D(BunG) ∼= QC(FlatǦ)
Symmetries acting G	Fun(G) SatG

	D(BunG)
Eigenbasis {eikx}t∈Ĝ Hecke Eigensheaves

Table 1.3: A loose analogy between the Fourier transform and the geometric Lang-
lands correspondence

Taking a hint from the last section, we recall that the Langlands duality for
function fields would take a representation of πét

1 (C) and relate it to a eigenfunction
for Hecke operators on the double coset space, corresponding to BunG(C) by the
Weil’s uniformization theorem. Arguing by extension, in a complex-geometric picture
we should expect to take a representation of the fundamental group of our complex
curve C, ρ : π1(C) → Ǧ and obtain some sort of eigen-object defined on the space
(more technically, moduli stack) of G bundles over C.

On the other hand, our discussion of the Fourier-Mukai transform gave us an
equivalence of categories of quasi-coherent sheaves on two (dual) algebraic varieties.
It can be seen that a representation of the fundamental group π1(C) → Ǧ, known
also as a local system, gives rise to a flat connection on a Ǧ-principal bundle over
C, to be discussed in Section 3.4.3. Viewing the set of flat connections on Ǧ-bundles
C as an algebraic space denoted FlatǦ(C), a flat connection would correspond to a
skyscraper sheaf at a given point x ∈ FlatǦ(C).

On the automorphic side, we expect to be studying some categorical generalization
of functions on BunG(C). The appropriate object turns out to be D-modules on this
space. A full discussion ofD-modules over a space X is beyond the scope of this thesis,
though they play a very important role in modern geometry and representation theory.
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In the case that the background of the reader is physics, it might be worthwhile to
point out that D-modules on X are modules over a ring denoted DX . DX can be
thought of as the (Weyl) algebra of operators in quantum mechanics on X.

The full “meta-conjecture” of geometric Langlands is then:

D(BunG(C)) ∼= QC(FlatǦ(C)) (1.4)

where Satake symmetries act naturally on both sides. This is supposed to be a
nonabelian analogue of the Fourier-Mukai transform, so in particular it should take
skyscraper sheaves on the right (i.e. flat Ǧ-connections on C) to eigenobjects on the
left that are again called Hecke eigensheaves in this setting. Again, the left-hand side
will be called the automorphic side and the right-hand side will be called the Galois
side.

This original “meta-conjecture” was formulated by Beilinson and Drinfeld based
off of their work in [14], though even then it was not a full-fledged conjecture as
it was not believed to be true in a general setting. It turns out to hold for G an
abelian torus, as shown in [15]. An explicit counterexample for more general G was
constructed by V. Lafforgue in [16].

As a final remark in this story: a refined version of this conjecture is given by
Arinkin and Gaitsgory in [17], involving a refinement of the quasi-coherent sheaves
on the Galois side to objects known as ind-coherent sheaves with a certain support
condition.

D(BunG(C)) ∼= ICN(FlatǦ(C)) (1.5)

Though this may seem more complicated, there is reason to believe that these objects
can be derived as the right ones to consider on the basis of physical arguments, c.f.
[18].

Classical Picture Geometric Langlands Topologically twisted
N = 4 theory

Space of “functions” D(BunG) ∼= QC(FlatǦ) Category of boundary
conditions

Symmetries acting SatG
	D(BunG) Insertions of ‘t Hooft line

defects
Eigenbasis Hecke Eigensheaves Magnetic Eigenbranes

Table 1.4: The connection between the ideas in geometric Langlands and supersym-
metric field theory, to be discussed in this thesis.

Although a full discussion of the concepts that appear in Table 1.3 is beyond
the scope of this thesis, we can at least give the reader one “final column”, yielding
Table 1.4. This column is intended to highlight some key points in the relationship
between the concepts of geometric Langlands and physics. The original idea and
motivation for a connection between the geometric Langlands program and the physics
of gauge theory was first investigated by Anton Kapustin and Edward Witten in
[9]. In this work, they studied a topological twist of N = 4 supersymmetric Yang-
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Mills theory. Here, a duality relates two different coupling regimes of the theory,
corresponding to the Galois and automorphic sides of geometric Langlands. The
roles of the Satake symmetries are understood in terms of objects known as line
defect operators, specifically Wilson and ‘t Hooft Lines. These objects will be defined
in depth later in this paper.

The action of Wilson loops on the Galois side can be very easily understood
using the language of holonomy and flat connections. These rely on the language of
gauge theory, to be defined in Chapter 3. On the other hand, the action of the ‘t
Hooft operators is much more subtle and involved. To be able to fully appreciate
this, we must understand the nature of these so-called “disorder operators” by first
understanding the well-known picture of instantons on R4 in Chapter 4 and then
using this to develop an understanding of monopoles on R3 in Chapter 5. Finally,
in the spirit of Edward Witten’s paper [19], in Chapter 6 we will make use of our
knowledge about 3D monopoles to understand the action of line defect operators in
the topologically twisted 4D N = 4 theory.
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Chapter 2

The Basics of Field Theory

This chapter aims to give a background into the physical concepts necessary for
understanding the remainder of this thesis.

2.1 Classical Field Theory

We begin with a mathematical formulation of classical field theory:

Physical Concept 2.1.1 (Classical Field Theory). A classical field theory E is a
collection of the following data:

• A manifold M known as the spacetime of the theory (usually taken to be
Riemannian or Lorentzian).

• A fiber bundle E →M (or more generally some set of fiber bundles Ei →M)

• A space F of sections of E → M called fields on M . A specific field will
be denoted Φ ∈ F in this chapter, though depending on the theory, different
variables will label the different fields.

• An functional S[Φ] from the space of fields Φ ∈ F into C, called the action of
the theory.

Classical field theory studies solutions to the classical equations of motion

{Φ ∈ F | δS(Φ) = 0}

where the variation δS(Φ) is taken along all directions in the space of fields F .

We now give a few examples.

Example 2.1.2 (Scalar Field in 1D). When M = R and E = R ×M is the trivial
bundle, we get the theory of a single scalar field φ (here Φ is φ). The action for this
field theory is often given by:

S[φ] =

∫
M

|dφ|2.

In this case we have the theory of the free massless scalar field over R.
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Example 2.1.3 (Electromagnetism and Yang-Mills theory). Classical electromag-
netism is defined on the bundle E = T ∗M with an action given by:

S[A] =

∫
M

F ∧ ?F, F := dA.

hereA ∈ Γ(M,T ∗M) is a 1-form and F = dA is the electromagnetic field-strength
tensor.

More generally, Yang-Mills gauge theory (to be more thoroughly defined and
discussed in the next section) takes E = T ∗M ⊗ g and has an action given by

S[A] =

∫
M

Tr (F ∧ ?F ) , F := dA+ A ∧ A.

Here the trace is taken over the Lie algebra using the Killing form. Generally, g is
taken to be a compact real form of a reductive Lie algebra.

Example 2.1.4 (Nonlinear Sigma Model). As a last example in this section, con-
sider a spacetime M and a manifold T known as the target space. Let T have a
Riemannian metric. A field Σ : M → T is a section of the trivial bundle E = T ×M .
The action for the nonlinear sigma model is then given by

S[Σ] =

∫
M

(
1

2
|dΣ|2 − V (Σ)

)
where V is some R-valued function on T called the potential. If no potential is
explicitly specified then we take V = 0.

2.2 Quantum Field Theory and the Operator-

Product Expansion

Though we do not know how to make sense of many mathematical aspects of quantum
field theory, the intuitive picture that we have of it is given by the Feynman path
integral. For a given quantum field theory, there is quantity known as the partition
function, defined as1:

Z =

∫
DΦ e−S[Φ]. (2.1)

This is an integral taken over the space of all fields. The measure on this space is
mathematically ill-defined in general.

Physical Concept 2.2.1 (Classical Observable). A classical observable (which we
may refer to just by the term observable) is a function from the set of field configura-
tions into C. The corresponding quantum observable is defined as a path integral

1Throughout this thesis, we will be working in Euclidean signature for the path integral.
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of a classical observable over the space of fields.

〈O〉 =

∫
DΦO(Φ) e−S[Φ]

In the Hilbert space language, a quantum observable is an operator-valued distribu-
tion on the space of fields.

The partition function is a quantum observable, as is the 1-point correlation
function at a point x1:

〈Φ(x1)〉 :=
1

Z

∫
DΦ Φ(x1)e−S[Φ].

In this example, the path integral over all configurations of Φ probes Φ at
this single point, giving us something that can be thought of as an expecta-
tion value. We can take expectation values of many different operators, e.g.
φ(x1), (∂µφ)(x1),1, φ(x1)(∂µφ)(x1) on X. We denote operators by O. More generally,
we define correlation functions of operators as

〈O1 . . .On〉g :=
1

Z

∫
DΦO1 . . .On e−S[Φ].

Physical Concept 2.2.2 (TQFT). If the correlation functions of a given quantum
field theory are independent of the metric g, then the corresponding theory is called
a topological quantum field theory (TQFT) in physics.

As an example, consider the following.

Example 2.2.3 (Chern–Simons Theory). Consider a 3-manifold M with Φ being the
field A ∈ Γ(M,T ∗M ⊗ g) and an action given by

S[A] ∝
∫
M

Tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
.

This is clearly topological because the metric has no role in defining the action.

Remark 2.2.4. Though for our case of a simple scalar field Φ, the partition function
is indeed defined as in Equation (2.1), more generally fields may be taken to be sections
of any bundle associated to some principal G-bundle for a given gauge group G. In
this case, the quantum theory often sums over all classes of principal G-bundles P .
For example, in the case of Yang-Mills theory

Z :=
∑
P

∫
DAe−S[A]. (2.2)

An explanation of these concepts, particularly of a principal G-bundle, will follow in
the next chapter. This will be important in the definition of supersymmetric Yang-
Mills theory considered in Chapter 6.
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Physical Concept 2.2.5 (Operator Product Expansion). Within the path integral,
a product of two local2 operators can be replaced by a (possibly infinite) sum over
individual operators. Namely, given two operatorsOa,Ob and evaluation points x1, x2,
there is an open neighborhood U around x2 such that

Oa(x1)Ob(x2) ∼
∑
c

Cc
ab(x1 − x2)Oc(x2) (2.3)

where f ∼ g implies that f − g stays nonsingular as x1 → x2. Here Oc are other
operators in the quantum field theory, and the Cc

ab are analytic functions on U\{x2}
(that often become singular as x1 → x2).

In the special case of a 2D conformally invariant theory, the above product struc-
cture yields the (possibly familiar) Laurent series associated with 2D conformal field
theory. In general, the structure constants contain valuable information about the
QFT that allow one to view it algebraically. In particular, they satisfy associativity
conditions. The philosophy of the OPE is as follows:

Idea 2.2.6. The OPE coefficients, together with the 1-point correlation functions
completely determine the n-point correlation functions in certain quantum field theo-
ries.

For example, a two-point function is simply given by:

〈Oa(x1)Ob(x2)〉 =
∑
c

Cc
ab(x1 − x2) 〈Oc(x2)〉 . (2.4)

and analogously for higher correlation functions.

2.3 Topological Quantum Field Theory

An understanding of topological quantum field theory (TQFT) will be crucial for
developing the arguments of Chapter 6. We will use the notes of [20] to develop this
section. TQFT turns out to be much more than just a type of physical theory, but in
fact has rich mathematical structure closely related to the ideas of representation the-
ory and higher category theory. Here we will be working with TQFTs over C, though
there are many generalizations from C to different fields or rings more generally.

2.3.1 Oriented, Closed TQFTs in n Dimensions

The motivation for n-dimensional TQFT from physics is as follows. We would want
a physical theory that is metric-independent to satisfy the following:

• The partition function Z on a smooth closed manifold M is a number Z(M) ∈ C
depending only on the topology of M .

2Here we can understand local to mean “acting at a point”.
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Figure 2.1: An example of a 2D manifold M with boundary ∂M consisting of three
disconnected circles. Here we will have Z(M) will be an element of Z(∂M) = Z(S1)⊗
Z(S1)⊗Z(S1).

• For a manifold M with boundary ∂M , the field theory will depend on the
boundary conditions for the fields on ∂M . Accordingly, in the example of a
single scalar field Φ we will write

Z(M)(ϕ) :=

∫
Φ|∂M=ϕ

DΦ e−S[Φ].

Thus Z(M) gives a functional on the fields on ∂M . The space of all these
functionals form a Hilbert space H∂M . Note this is similar to the Hilbert space
picture defined on R3,1, where we must pick a time direction to define a 3-
manifold on which our Hilbert space of states is associated to. So more generally,
Hilbert space corresponds to the space of functionals for the boundary values
of fields on a codimension 1 manifold.

• Extending this idea, for a closed (n − 1)-manifold E, Z(E) will give a vector
space HE that can be thought of as the space of functionals on the fields living
on E. Unlike in quantum mechanics, it will turn out that this space is finite
dimensional for all TQFTs of interest to us in the scope of this paper.

• Our assumptions about locality in quantum mechanics lead us to demand that if
E is a disjoint union E = E1tE2, then the Hilbert spaces factor appropriately:

Z(E) = Z(E1)⊗Z(E2).

These physical ideas, together with a few other axioms, will give us our definition of
TQFT. First, in a time evolution picture of Hilbert space, the role of the evolution
is played by objects known as “bordisms”, connecting (n − 1) manifolds E and F
by n-manifolds M so that the boundary of M is E t F . Here E denotes E with
reverse orientation. This is necessary so that we can identify bordisms as elements
in HF ⊗HE = HF ⊗H∗E = Hom(E,F ), namely linear maps between the associated
Hilbert spaces.

We must first define what we mean by bordism.

Definition 2.3.1 (Bordism). An n-dimensional bordism between two closed (n −
1)-manifolds E and F is a triple (M, ιin, ιout) consisting of an oriented compact n-
manifold M with boundary together with injections ιin : E → ∂M and ιout : F → ∂F
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Figure 2.2: The symmetric braiding bordism illustrated for the case of Bord2, giving
the category symmetric monoidal structure.

so that that ιin t ιout : E tF is an orientation-preserving diffeomorphism of E tF to
∂M . Two bordisms (M, ιin, ιout), (M

′, ι′in, ι
′
out) are said to be equivalent if there is an

orientation-preserving diffeomorphism on M so that the following diagram commutes.

M

E F

M ′

ψ

ιin

ι′in

ιout

ι′out

Definition 2.3.2. The category Bordn consists of objects that are all closed (n− 1)
dimensional manifolds. Morphisms in Bordn are (equivalence classes) of bordisms
E → F .

The following category-theoretic definition will play an especially important role
in this story:

Definition 2.3.3 (Symmetric Monoidal Category). A category C is called monoidal
if there is a bifunctor ⊗ : C × C → C that is associative up to natural isomorphism as
well as an object I ∈ C that is a left and right identity for C up to natural isomorphism.
Further, C is symmetric monoidal if A ⊗ B is naturally isomorphic to B ⊗ A for
all A,B ∈ C.

Let C and D be two such categories. A functor F : C → D is symmetric monoidal
it preserves the symmetric monoidal structure of C and D

Example 2.3.4. The obvious example of a symmetric monoidal category is the cat-
egory of vector spaces over a field k, Vectk. The bifunctor here is the usual tensor
product and the identity I is k viewed as a vector space.

Observation 2.3.5. The category Bordn is symmetric monoidal.

Note that for any two closed (n− 1)-manifolds E,F in Bordn, their disjoint union
EtF is also in Bordn. This gives us monoidal structure. The unit object is the empty
set ∅, viewed as an (n− 1)-manifold. The fact that E t F is naturally isomorphic to
F t E comes from the canonical symmetric braiding bordism illustrated in 2.2.

We can now make a precise definition of an n-dimensional TQFT.
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Definition 2.3.6 (TQFT). A n-dimensional (oriented, closed) topological quantum
field theory over C is a symmetric monoidal functor

Z : Bordn → VectC.

For more worked examples motivating this formalism, we again refer the reader
to [20]. The following theorem illustrates the interesting algebraic connections that
TQFTs have and helps to drive our understand of 2D TQFT. Moving into higher
dimensions is much harder.

Theorem 2.3.7. The category of 2-dimensional topological quantum field theories is
the same as the category of commutative Frobenius algebras over C.

Here, a Frobenius algebra A is an associative algebras with a nondegenerate bilinear
form σ : A⊗ A→ k so that σ(ab, c) = σ(a, bc).

2.3.2 Extended TQFTs

The ideas of TQFT allow us to slice up an n-dimensional manifold M into smaller
n-manifolds that are “glued together” along (n−1) manifolds. Topological invariants
about M can be recovered by studying how this gluing functorially translates into
linear algebraic data.

In general, besides just considering n-bordisms between n − 1 manifolds, one
might also be inclined to consider the extended topological quantum field theory in
n-dimensions. Such TQFTs consider objects of codimension greater than one.

Extended TQFTs are more difficult to define, and would in principle rely on the
language of n-categories to give a satisfactory definition. If the reader is familiar with
the notion of a C-linear category, then a k-extended TQFT of dimension n is [21] a
symmetric n-tensor functor Z mapping

• smooth compact n manifolds to elements of C,

• smooth compact n− 1 manifolds to vector spaces over C,

• bordisms of smooth compact n−1 manifolds to C-linear maps on vector spaces,

• smooth compact n− 2 manifolds to C-linear categories,

• bordisms of smooth compact n− 2 manifolds to C-linear functors between the
C-linear categories,

• . . .

• smooth compact n− k manifolds to C-linear (k − 1)-categories,

• bordisms of smooth compact n−k manifolds to C-linear (k−1) functors between
the C-linear (k − 1)-categories.

Fortunately, for our case, we will only need to understand 2-extended TQFT in
dimension 4. It will turn out that our codimension two manifolds will give rise to the
categories of interest: D(BunG) and QC(FlatǦ).
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2.4 Supersymmetry

2.4.1 Spin Representations

Consider a (real or complex) special orthogonal group SO(V,Q) in Euclidean or
Minkowski space V with nondegenerate quadratic form Q that induces a symmet-
ric bilinear form 〈·, ·〉 on V . The Spin group Spin(V,Q) is defined to be the double
cover of SO(V,Q). For SO(n), n > 2, this is also the universal cover. Spin representa-
tions are in a sense the “simplest” representations of Spin(V,Q) that do not descend
to a representation of the corresponding orthogonal group.

We will first look at spin representations of SO(n,C). In this setting, there is a
basis in which Q(~z) = z2

1 + · · ·+ z2
n.

Definition 2.4.1 (Isotropic Subspace). A subspace W ⊆ V is totally isotropic if
every vector v ∈ W has Q(v) = 0.

For n = 2k (this is the case that will be relevant to us), it turns out that we
can form an orthogonal decomposition of V into W ⊕W ∗ that are maximal totally
isotropic subspaces.

Then to define the spin representation of so(2k,C), we take the exterior algebras

S = Λ•(W ), S ′ = Λ•(W ∗).

These turn out to be isomorphic representations of so(n,C), so let us focus on S.
This is called the Dirac spinor representation. In our case of n = 2k, we get that
S reduces into a sum of two distinct irreducible representations corresponding to
the even and odd degrees of this exterior algebra. We denote these by S+ and S−,
respectively. They are both representations of dimension 2k−1. In terms of a root
system, the highest weights for S+ and S− are(

1

2
,
1

2
, . . . ,

1

2
,
1

2

)
, and

(
1

2
,
1

2
, . . . ,

1

2
,−1

2

)
respectively. They are called Chiral or Weyl spinor representations. In general a
vector transforming in the spin representation is called a spinor in physics.

The real spin representations can then be obtained from these. Such representa-
tions are called Majorana spinors. See, for example, chapter 3 of [22]. In particular,
if n = 1, 2, 3 mod 8, the complex spin representations constructed above have real
structure. Hence, in the special case of n = 2 mod 8, we get Majorana-Weyl spinor
representations. This will end up being the reason why the exceptional structure
of N = 4 super Yang-Mills comes from the fact that it is reduced from an n = 10
dimensional theory.
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2.4.2 Lie Superalgebras

Definition 2.4.2. A Lie superalgebra is a Z2-graded Lie algebra with a commu-
tator bracket satisfying:

[x, y] = −(−1)|x||y|[y, x]

Where | · | is the Z2 grading.

In our case, we will be extending the familiar Poincaré algebra of Lie{SO(3, 1) n
R4} by N copies of the real spin representation S of the associated spin group which
is Spin(3, 1) in this case3. The space of odd vectors is denoted by ΠS.

Definition 2.4.3 (Super-Poincaré Algebra). A super-Poincaré algebra, spoin, is
a Lie superalgebra arising as an extension

ΠS⊕N spoin poin

of the Poincaré algebra Poin by the vector space of odd vectors, taken to be in odd
degree.

There is a chirality operator Γ : S → S on the real spin representation with
eigenvalues ±i identifying the two chiral summands. In fact, Γ induces a pairing
S ⊗ S → Rn. This is exactly what will serve as the super-Lie bracket taking two
supersymmetry generators to the generators of translation Pµ.

We can apply the same construction to other isometry groups.
Now let N > 1, and denote odd vectors coming from different copies of S by QA

and QB. The brackets between the odd vectors {QA
α , Q

B
β } give rise to central elements

ZAB in the algebra. These are called supercharges and arise as:

{QA
α , Q

B
β } = εαβZ

AB.

They satisfy
ZAB = −ZBA,

so that there are a total of N (N − 1)/2 distinct supercharges in a theory with N
supersymmetry generators.

Definition 2.4.4 (R-symmetry group). The R-symmetry group is the group of
outer automorphisms of the super-Poincaré group which fixes the underlying Poincaré
group.

For the case of 4D N = 4 the R-symmetry group turns out to be SU(4) ∼= Spin(6).
For a deeper review of the subject, see [23].

3In cases when the dimension of the spacetime is 2 mod 4 we have two inequivalent spin repre-
sentations, and so will need to use two numbers to denote this. For example there is an exceptional
object known as the N = (2, 0) supersymmetric conformal field theory in 6 dimensions.
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Chapter 3

The Mathematics of Gauge Theory

Gauge theory will play a central role in understanding the geometric Langlands cor-
respondence physically. The role of the group G in the Langlands correspondence is
played by the gauge group in the physical theory.

3.1 Fiber Bundles

3.1.1 Definitions and Examples

We will be working on a manifold M (not necessarily Riemannian). In the first
definition, we can assume M is just a topological space.

Definition 3.1.1 (Fiber Bundle). We define a fiber bundle E on a topological
space M to be

• A topological space E called the total space

• A topological space M called the base space

• A topological space F called the fiber

• A projection map π : E → M that is surjective so that π−1(p) := Ep is
homeomorphic to F . This is the fiber over p.

• For each x ∈ E there is an open neighborhood U ⊆M of p = π(x) so that there
is a homeomorphism ψ from U × F to π−1(U) in such a way that projection p1

onto the first factor of U × F gives π

U × F π−1(U)

U

p1

ψ

π
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Fiber bundles generalize the notion of cartesian products of two spaces M and F
by allowing for the same local product structure but much more interesting global
“twisted structure”.

In physics, especially when calculations are to be performed, manifolds are often
described in terms of a set of coordinate charts Uα that are homeomorphic to Rn with
n = dimM and α ∈ I is an index in some indexing set, not necessarily finite1. A
covering of M in terms of coordinate charts

M =
⋃
α∈I

Uα.

together with homeomorphisms ψα : Uα → Rn is called an atlas for M . In order to
make sense of M in terms of an atlas, we define transition maps between different
Uα by ϕβ ◦ ϕ−1

α .
By using transition maps, we can transport data locally defined on Uα to other

parts of M by “moving it across” other Uβ. This data often comes from the fiber
bundles over M . This gives us an ability to “glue together” locally trivial bundles
on the Uα to construct a globally nontrivial fiber bundle. For the fiber bundles of
interest to us, there will be a group G of automorphisms that acts on the fibers when
comparing the data across different Uα. We will later refer to E as an associated
bundle to G. We define this more precisely:

Definition 3.1.2 (Coordinate Bundle). A coordinate bundle consists of

• A fiber bundle, defined as before

F E

M

π

• A group G, called the structure group of E acting effectively on each fiber2

• A set of open coverings {Uα}α∈I of M with diffeomorphisms φα : Uα × F →
π−1(Ui) called local trivializations so that the following diagram commutes

Uα × F π−1(Uα)

Uα

p1

ψα

π

1But in the case of M compact, I can always be made finite.
2A G-action is effective if only the identity element acts trivially i.e. ∀g ∈ G∃f ∈ F | gf 6= x.

The reason for this is that if G did not act effectively, then elements that act trivially would give a
normal subgroup N . Upon passing to the quotient we would get an effective action of G/N on F .
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• For each p ∈ Uα ∩ Uβ, ψ−1
β ψα act continuously on the fiber π−1(p), coinciding

the action of an element of G.

In gauge theory, G is taken to be a Lie group called the structure group of E.

Definition 3.1.3. A Lie group is a group that is also a differentiable manifold so
that the group operations of multiplication and inversion are compatible with the
differentiable structure.

A basic working knowledge of Lie theory is assumed, however we will go over
relevant aspects of Lie groups in the following sections of this chapter.

Note. In the above, we described ϕα, τα→β, and ψ−1
β ψα as homeomorphisms, which

are morphisms in the category of topological spaces. If we wish to work in other
categories, such as Cr-differentiable, smooth, analytic, or complex manifolds, then
the transition functions are appropriately redefined to be functions that are Cr-
differentiable, smooth, convergent Taylor series, or holomorphic respectively. If we
were working in the category of algebraic varieties, the corresponding maps we con-
sider would have to be regular.

At the fiber over each point, since we can identify ψ−1
β,p ◦ ψα,p with an element in

G, we write gα,β : Uαβ → G to denote the G action fiberwise on the overlap of the two
bundles over Uα, Uβ. This translates data from one coordinate patch into the other.

Proposition 3.1.4. gαβ satisfies

• (identity) gαα = 1

• (inversion) gαβ = g−1
βα

• (cocycle condition) On Uα ∩ Uβ ∩ Uγ gαβgβγ = gαγ

The equivalence class of a set of coordinate bundles on M is the corresponding
fiber bundle over M .

Fiber bundles whose fibers are vector spaces are called vector bundles. The
rank of a vector bundle is the dimension of the vector space fiber. A rank n vector
bundle over a field k will have its structure group G ⊆ GLn(k). Examples are the
tangent/cotangent bundles of a manifold, and any tensor/symmetric/exterior powers
thereof. We will see that we can view vector fields, p-forms, and many other interesting
and physically-relevant objects as sections of fiber bundles, to be described in the
later sections.

3.1.2 Morphisms and Extensions

The morphisms in the category of fiber bundles are called bundle maps:

26



Definition 3.1.5 (Bundle Map). For two fiber bundles π : E → M,π′ : E ′ → M ′ a
bundle map is a smooth map f : E → E ′ that naturally induces a smooth map on
the base spaces so that the following diagram commutes:

E E ′

M M.

f

π π′

f

From this we obtain the way which we will identify two bundles as identical.

Definition 3.1.6 (Equivalence of fiber bundles). Two bundles are equivalent if there
is a bundle map so that both f and f are diffeomorphisms.

If we have a fiber bundle π : E → M and ϕ : N → M for another manifold N ,
then we can pull back E to form a bundle over N

ϕ∗E = {(y, [f, p]) ∈ N × E | ϕ(y) = p}.

We have projection on the second factor of ϕ∗E as a map g : ϕ∗E → E. This is the
pullback bundle ϕ∗E.

Definition 3.1.7 (Pullback Bundle). For a map ϕ : N → M and E a fiber bundle
over M so that π : E →M , we define the pullback bundle ϕ∗E so that the following
diagram commutes:

ϕ∗E E

N M.

g

π′ π

ϕ

Let us consider an example which will appear later in the context of studying a
monopole placed at the origin of R3.

Example 3.1.8. Consider a vector bundle E → R3\{0}. The pullback gives rise to a
vector bundle on S2. This should be thought of as the restriction of E to the sphere
S2.

We can take products of fiber bundles as topological spaces in the obvious way to
obtain a fiber bundle over M ×M ′,

E × E ′ π×π
′

−−−→M ×M ′.

In the special case where M = M ′ we can also define

Definition 3.1.9 (Whitney Sum of Vector Bundles). For E,E ′ vector bundles over
M with structure groups G,G′ respectively, we can define their sum as E ⊕E ′ to be
pullback bundle E × E ′ along the diagonal map ∆ : M →M ×M .
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More explicitly, this is a fiber bundle over M with F ⊕F ′ fibered over every point.
The structure group of E ⊕ E ′ is the product G × G′ of the structure groups of the
original bundles and it acts diagonally on their sum.

GE⊕E′ =

{(
gE 0
0 gE

′

)
: gE ∈ G, gE′ ∈ G′

}
and the transition functions act diagonally in the same way.

Similarly, we can define arbitrary direct sums of bundles E1⊕· · ·⊕Er recursively
using the above definition.

For some intuition about when fiber bundles are nontrivial, consider the following
theorem which we state without proof but refer to [24] chapter 3. Stated simply:
taking the pullback of a bundle along a map is topologically invariant under homotopy
of the map.

Theorem 3.1.10. Let π : E → M be a fiber bundle over M and consider maps f, g
from N → M so that f, g are homotopic, then the pullback bundles are equivalent:
f ∗E ∼= g∗E over N .

An important fact is the following corollary of this theorem.

Corollary 3.1.11. If M is contractible, every fiber bundle π : E →M is topologically
trivial3.

Proof. Let f : pt → M and g : M → pt be such that f ◦ g ∼ id|M and g ◦ f ∼ id|pt.
Then because pullback respects homotopy equivalence, we will have that E ∼ (f ◦
g)∗E ∼ f ∗(g∗E) but g∗E is the (necessarily trivial) bundle on a point, so this will
pull back along f to the trivial bundle along f .

3.1.3 Principal Bundles

We have seen that in general, the structure group of a fiber bundle acts effectively on
the fibers. More strictly, when G acts freely4 and transitively5 from the right6 on the
fiber, we can identify F with G. In this case, we get a principal G-bundle. This
will be an object of central interest in what follows.

Observation 3.1.12. The fibers of a principal G-bundle are homeomorphic to G

3In the language of classifying spaces, M being trivial implies there is only one homotopy class
of map M → BG, so that consequently the only fiber bundle over M is the trivial one.

4A free G-action on F is one where ∀f ∈ F, gf = f ⇒ g = 1 i.e. each element has only the
identity fixing it. This is a more restrictive form of effective action.

5A transitive G-action on F is one with a single G-orbit, i.e. any element can be taken to any
other.

6The reason for defining this to be a right action is so that it can commute with transition maps,
which are taken to act from the left [25].
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Proof. Let P → M be a principal G-bundle and pick a point p ∈ M . Take a point
f ∈ π−1(p). We can construct a homeomorphism ϕ : G→ π−1(p) by sending g 7→ pg.
To prove that this is invertible, note that the action is transitive, so ϕ is certainly
surjective. Further, if pg = pg′ then p = pgg′−1 so necessarily g = g′, and we have
injectivity as a map between topological spaces.

Topologically each fiber F of a principal G-bundle looks like G. Unlike G, however.
F need not have a canonical choice of identity element and consequently does not
generically have canonical groups structure. Indeed, if it did then the bundle would
necessarily have to be the trivial one M × G. Such a space, that looks like G after
“forgetting” which point is the identity is called a G-torsor.

We give a an example for motivation:

Example 3.1.13 (Frame Bundle). The fiber bundle of all frames, namely choices of
bases in an n-dimensional space V is a principal GLn(V ) bundle. Given a quadratic
form Q that defines a notion of orthonormality, the bundle of all orthogonal frames
is a principal SOn(V ) bundle.

The frame bundle is generally nontrivial.

Example 3.1.14. As another example, taking G to be a discrete group and X̃ → X
be the universal cover of a topological space X, we get that X̃ is a principal G-bundle
on X with G = π1(X).

Since G acts transitively on the fiber, there is only one G orbit and we can form
the quotient P/G in a well-defined way. We then have that P/G is homeomorphic to
M .

If M,F are two manifolds and G has an action G×F → F , then for an open cover
{Uα} of M with a map gαβ : Uα ∩ Uβ → G satisfying the conditions of Proposition
3.1.4 we can construct a fiber bundle by first building the set

X =
⋃
α

Uα × F

and quotienting out by the relation

(x, f) ∈ Uα × F ∼ (x′, f ′) ∈ Uβ × F ⇐⇒ x = x′, f = gαβ(x)f ′.

Then, E = X/ ∼ is a fiber bundle over M . We can locally denote elements of E
by [x, f ] so that

π(x, f) = x, ψα(x, f) = [x, f ].

Proposition 3.1.15. For a fiber bundle π : E → M with overlap functions gαβ :
Uαβ → G between charts, we can form a principal bundle P so that

P = X/ ∼, X =
⋃
α

Uα ×G.
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In certain contexts that we will encounter later, the gαβ are referred to as clutch-
ing functions.

Example 3.1.16. Take M = CP1 the Riemann sphere and consider constructing a
G-bundle over it. The Riemann sphere can be decomposed as a union of two copies
of C with overlap exactly on the cylinder C×. On each copy of C the G-bundle is
trivializable since C is contractible. A clutching function would be a map ρ : C× → G,
and this gives rise to a principal G-bundle on M .

This discussion leads naturally to the next subsection.

3.1.4 Associated Bundles

Take a principal bundle P and let F be a space with associated automorphism Aut(F )
so that ρ : G→ Aut(F ) is a faithful representation. Then g·f is a well-defined faithful
left G-action.

Definition 3.1.17. Given a principal bundle π : P → M and group action ρ : G→
Aut(F ), the associated bundle is given by taking the product space P × F and
forming the quotient space:

(P × F )/G

given by identifying:
(xg, f) ∼ (x, ρ(g)f).

This is the fiber product P ×G,ρ F . The projection map:

π′ : (P × F )/G→M

is given by sending (x, f) to π(x) is well-defined since π(xg) = π(x).

Note that the (equivalence classes of) a coordinate bundles in section 3.1.1 gives
an associated bundle.

Two associated bundles that we’ll care about are P ×AdG and P ×ad g. The latter
will be a vector bundle known as the adjoint bundle.

Every fiber bundle with some structure group G arises as an associated bundle to
some principal G-bundle. Importantly, the study of equivalence classes of G-bundles
can be equivalently cast as a study of certain associated bundles.

3.1.5 Sections and Lifts

As mentioned before, any specific smooth vector field on a manifold M can be viewed
as a smooth map from M to the the tangent bundle of M : TM . This motivates the
notion of a section of a fiber bundle that associates to each base point p ∈ M an
element f in the fiber Ep. Explicitly:

Definition 3.1.18 (Section of a Fiber Bundle). A global section of the fiber bundle
π : E →M is a map s : M → E so that π ◦ s = id.
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When we have, s : U ⊆ M → E, we call s a local section. The set of global
sections is denoted by Γ(M,E). In different contexts, this may mean sections that
are continuous, smooth, holomorphic, regular, etc. For smooth sections, this space is
often denoted Γ∞(M,E).

Example 3.1.19. The set of all smooth r-forms on M is Γ∞(M,Λr(T ∗M)) on which
the structure group G of T ∗M acts on each component.

Proposition 3.1.20. For a principal bundle P , any local trivialization ψ : U ×G→
π−1(U) defines a local section by s : p 7→ ψ(p, e) and conversely any local section
defines a trivialization by ψ(p, g) = s(p)g

3.2 Lie Theory

Although standard knowledge on the definition of a Lie Group/Algebra is assumed,
we will try to motivate the ideas in this field in a more geometric way than is often
done.

Consider a manifold M , and take Vect(M) the space of all smooth vector fields
on M . For a map ϕ : M → N we have a pushforward ϕ∗ : Vect(M)→ Vect(N) on
vector fields given by

[ϕ∗(v)](f) = v(ϕ∗(f)).

A smooth vector field X on M gives rise to flows γ(t) that are solutions to the
differential equation of motion

d

dt
f(γ(t)) = Xf.

Any ordinary differential equations has an interpretation as equations of motion along
flows of vector fields in some space.

The motion along this flow is expressed as the exponential

f(γ(t)) = etXf(p), p = γ(0).

Now consider two vector fields X, Y on M . Let Y flow along X so we move along
X giving

etXY = Y (γ(t)) ∈ Tγ(t)M.

Note that the reverse flow e−tX maps Tγ(t)M → Tγ(0)M = TpM , so acts by pushfor-
ward on etXY equivalent to:

etXY e−tX ∈ Tp.

We can compare this to Y and take the local change by dividing through by t as
t→ 0, giving the Lie derivative

LXY :=
etXY e−tX − Y

t
. (3.1)
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It is easy to check that this is in fact antisymmetric and gives rise to a bilinear form
on Vect(M)

[X, Y ] := LXY. (3.2)

A vector space endowed with such a bilinear form and satisfying the Jacobi identity
is a Lie algebra.

Most important is when M itself has group structure, so is a Lie group, which we
will denote by G. Then the vector fields on G of course also form a Lie algebra, just
by virtue of the manifold structure of G.

We state the following proposition without proof

Proposition 3.2.1. Let ϕ : G1 → G2 be a homomorphism of Lie groups, then
ϕ∗ : Vect(G1)→ Vect(G2) is a homomorphism of Lie algebras.

For a Lie group, group elements induce automorphisms on the manifold by left
multiplication, denoted Lg and by right multiplication Rg:

Rg : G→ G, g : h 7→ gh

Lg : G→ G, g : h 7→ hg.

We have that each group element induces (by pushforward) a map between tangent
spaces

(Lg)∗ : ThG→ TghG

(Rg)∗ : ThG→ ThgG

A vector field X is called left-invariant if (Lg)∗X(h) = X(gh). By Proposition
3.2.1, we get that (Lg)∗[X, Y ] = [(Lg)∗X, (Lg)∗Y ] so these left-invariant vector fields
in fact form a Lie algebra for the group. Physically, this is the set of vector fields
corresponding to the isometries of G.

In local coordinates, the commutator can be written as:

X =Xµ∂µ, Y = Y µ∂µ

[X, Y ] =(Xν∂νY
µ − Y ν∂νX

µ)∂µ.

Left-invariant vectors flow in a way that is consistent with the group action:

(Lg)∗X(e) = X(g).

The set of all left-invariant vector fields can be uniquely extracted from their value at
the identity by this rule, and in fact for any vector x ∈ TeG, there is a corresponding
left-invariant vector field on G, X|g = (Lg)∗x. Therefore the tangent space to the
identity gives rise to a Lie algebra which we will call the Lie algebra of G and denote
by g. The Lie algebra of G is finite dimensional when G is and its dimension is equal
to the dimension of G. We will also use the notation g = Lie(G).

Now because we define the Lie algebra as the “tangent space to the identity”, it
is worth asking “how does the Lie algebra relate to the tangent space at a generic
point, g, on the group?”. The idea is to bring that vector back to the identity using
G and see what it looks like.
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This is accomplished by using the Maurer-Cartan form Θ, which is a g-valed
1-form on G so that for v ∈ TgG,

Θ(g)(v) := (Lg−1)∗(v). (3.3)

For G connected and simply connected, the “inverse” of the map Lie : G → g is
a map g→ G suggestively denoted by exp.

Proposition 3.2.2 (Properties of exp). For G a compact and connected Lie group,
with Lie algebra g, we have a map exp : g→ G.

1. [X, Y ] = 0⇔ eXeY = eY eX

2. The map t→ exp(tX) is a homomorphism from R to G.

3. If G is connected then exp generates G as a group, meaning all elements can be
written as some product exp(X1) . . . exp(Xn) for Xi ∈ g

4. If G is connected and compact then exp is surjective. It is almost never injective.

Example 3.2.3. The Lie algebra associated to the Lie group U(n) of unitary matrices
is u(n) of antihermitian matrices. This is the same as the Lie algebra for the group
SU(n)

Definition 3.2.4 (Adjoint Action on G). For each g we can consider the homomor-
phism Adg : h 7→ ghg−1 or Adg = Lg ◦Rg−1 . This defines a representation

Ad : g → Diff(G)

Definition 3.2.5 (Adjoint Representation of g). The pushforward of this action gives
rise to the adjoint representation of the Lie group g by

(Adg)∗ = (Lg ◦Rg−1)∗

From the product rule, this acts as [g,−] at the identity. We denote this as

ad : g→ End g

The Jacobi identity ensures that ad is a homomorphism. If the center of G is zero
then ad is faithful and we have an embedding into GL(n). This is nice because it also
shows that after a central extension, every Lie algebra can be embedded into GL(n),
a weaker form of Ado’s theorem (that all Lie algebras can be embedded into GL(n)).

Moreover the adjoint representation gives rise to a natural metric on g called the
Killing Form given by

κ(X, Y ) := Tr(ad(X)ad(Y )). (3.4)

Proposition 3.2.6. For g a semisimple Lie algebra, the above gives rise to a non-
degenerate bilinear form.

For a proof see [26].
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3.3 The Group of Gauge Transformations

We use the ideas from the section on gauge transformation in [27] to build the fol-
lowing definition

Definition 3.3.1 (Gauge Transformation). Let P be a principle bundle over M with
structure group G. A diffeomorphism Φ : P → P is a gauge transformation if it
satisfies the following two properties

• Φ preserves fibers so that the following diagram commutes

P P

M

Φ

π
π

• Φ commutes with the right G action on P .

Diffeomorphisms satisfying these conditions form a group referred to as the group
of gauge transformations7.

As an illustration for intuition, a gauge choice on a trivial bundle over a space M
is just a map ψ : M → G. A gauge transformation is then a section g ∈ Γ∞(M,G)
that acts by left action, transforming ψ → g · ψ.

More generally for a principal G bundle P on a coordinate patch Uα, gauge choices
are maps from Uα → P |Uα , which can be interpreted the same way.

3.4 Connections on Principal Bundles

There are several different and equivalent ways to characterize the notion of a con-
nection on a principal G-bundle. We will explore two prominent ones in this section.

3.4.1 The Ehresman Connection

Take a G-principal bundle π : P → M . The tangent space at any point p ∈ P has a
canonical subspace that is killed by π∗.

Definition 3.4.1 (Vertical Subspace). The vertical subspace VpP at a point p of
a fiber bundle is defined as ker π∗. This can be thought of as the tangent space at p
restricted to the fiber over π(p).

Just as ξ ∈ g gives rise to a vector field Xξ on G, it also canonically gives rise to
a vector field σ(ξ) on P .

7Some authors may refer to this as the gauge group. For us, the gauge group will be the G we
started with while this (much larger) group will be denoted G.
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Definition 3.4.2 (Fundamental Vector Field of ξ). Let ξ ∈ g and consider
exp(tξ) ∈ G so that for p ∈ P we get cp(t) = Rexp(tξ)p which depends smoothly
on p. Note c′p(0) ∈ TpP at each point.

σ : g→ Vect(P ), [σ(ξ)](p) 7→
[
d

dt
petξ
]
t=0

Note, by virtue of σ(ξ) lying along the G-fiber.

π∗ ◦ σ(x) =
d

dt
(π ◦ cp(t))|t=0 =

d

dt
(p) = 0

so σ(x) ∈ VpP . Since P is a manifold of dimension dimM+dimG, π∗ : TpP → Tπ(p)M
has a kernel of dimension dimG = dim g In fact:

Proposition 3.4.3. σp is a Lie algebra isomorphism between g and VpP .

Proof. Since G acts freely on principal bundles, σ is injective, so in fact it must be
an isomorphism.

Lemma 3.4.4 (Properties of σ). We get that σ satisfies:

1. [Rg]∗σ(x) = σ(adg−1x),

2. [gi]∗σ(x)|p = gi(p)x.

Proof. 1. We have

[Rg]∗ [σ(x)](p) =
d

dt
(Rgpe

tx)

=
d

dt
pgAdg−1etx

=
d

dt
pg exp[t(adg−1x)]

= [σ(adg−1x)](pg).

2. Secondly,

[gi]∗ [σ(x)]|p =
d

dt
gipe

tx

= gi(p)x.

Now σ respects the Lie algebra structure and forms a homomorphism from g to
Vect(P ) so that in fact

Corollary 3.4.5. (Rg)∗Vp = Vpg: pushforward acts equivariantly on vertical sub-
spaces.
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Proof. Let X(p) ∈ Vp pick A ∈ g so that the corresponding fundamental vector field
is σ(A)(p) = X(p). Then we just look at

(Rg)∗σ(A)(p) = σ(adg−1A)(pg)

which is vertical. It’s easy to go back from pg to g as well by picking A ∈ g so that
X(pg) = adg−1A.

Now note:

0 VpP TpP Tπ(p)M 0
π∗

An injection of Tπ(p)M into TpP to make the above sequence split is called a hori-
zontal subspace at p HpP .

Definition 3.4.6 (Horizontal Subspace). A horizontal subspace is a subspace HpP
of TpP such that

TpP = VpP ⊕HpP.

We’ll abbreviate this by Hp and the vertical subspace by Vp when our principal
bundle is unambiguous.

Crucially, there is no canonical choice of Hp, reflecting the physical fact there is
no “god-given” way to compare local gauges between different points. For a given
gauge, a vector on TxM should lift to a vector on TpP for some p corresponding to
that gauge choice. The lift will lie in a horizontal subspace which will depend on the
gauge choice in an infinitesimal neighborhood around x. A global choice of horizontal
subspace gives rise to the following:

Definition 3.4.7. An Ehresmann connection is a choice of horizontal subspace
at each point p ∈ P so that

1. Any smooth vector fieldX splits as a sum of two smooth vector fields: a vertical
field XV and a horizontal field XH so that at each point p ∈ P we have
XV ∈ Vp, XH ∈ Hp. That is, the choice of Hp varies smoothly.

2. G acts equivariantly on Hpg:

Hpg = (Rg)∗Hp.

We will denote the collection of our choice of HpP by HP and similarly define
V P to be the (always canonical) collection of vertical subspaces. We say any vector
field can be split into a vector field XH ∈ HP and XV ∈ V P .

Naturally, for any choice of HP , we have a corresponding projection operator
πH on vector fields πH : VectP → HP and similarly πV = id − πH , both with
corresponding equivariance conditions.

Note that 1− π∗ acts on TpP as a projection operator onto the vertical subspace
VpP . A choice of horizontal subspace gives us an analogous projection operator H
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acting on TpP , mapping to the horizontal subspace. Moreover it is easy to check that
(by the equivariance of the horizontal subspace), we must have

[Rg]∗ ◦H = H ◦ [Rg]∗.

Just as π∗ killed the vertical subspace, given a horizontal subspace, we would like
to construct a similar operator that kills off the horizontal component and acts as a
projection onto the vertical component. This role will be played by a connection
1-form

Definition 3.4.8 (Connection 1-form on Principal Bundle). A connection 1-form, ω,
is an element of Ω1(P, g) satisfying:

• ω ◦ σ = id, that is σ ◦ ω is a projection onto Vp.

• R∗gω = ad g−1ω.

The first condition says that, after identifying the vertical subspace with g, ω acts
trivially. The second condition is standard equivariance, since the right adG-action
on ω would exactly look like g−1ωg.

We now have the following equivalence:

Proposition 3.4.9. A choice of Ehresman connection on P is in one-to-one corre-
spondence with the choice of a connection 1-form on P

Proof. Given a projection operator H to the horizontal subspace satisfying the equiv-
ariance properties of 3.4.7, HpP , 1−H would be a projector onto the vertical subspace.
Then σ−1(1−H) gives us a functional on Tp valued in g that satisfies the properties
of Definition 3.4.8. This is our 1-form.

Conversely, given a connection 1-form ω, 1 − σ ◦ ω gives us a projection onto a
subspace trivially intersecting the vertical subspace. By the equivariance properties of
ω, this subspace satisfies the equivariance conditions in 3.4.7 and so we are done.

We thus have the following correspondence:

Ehresman
Connections HP ←→

Horizontal
Projection Operators H ←→

Connection
1-forms ω

Each of the above are smooth on E, and have appropriate equivariance conditions:

• RgHp = Hpg: Horizontal subspaces are G-equivariant,

• [Rg]∗H = H[Rg]: Horizontal projection commutes with G action of changing
gauge,

• ω(pg) = R∗gω = g−1ω(p)g: The 1-form is G-covariant.

Given a choice of gauge sα on a given coordinate patch Uα, we can define a 1-form
A ∈ Ω1(M, g) by

A = s∗αω. (3.5)

This is the connection 1-form on M , and is the object that physicists are more
used to working with in gauge theory.
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Fact 3.4.10. The group of gauge transformations G acts on A by

A→ ad gA+ g−1dg.

where g is a function from Uα → G. Consequently, a connection A that looks like
g−1dg can be gauge transformed (by acting with g−1) into the field A = 0, and is
consequently called pure gauge.

3.4.2 Differential Forms on Principal Bundles

Definition 3.4.11. Given two g-valued differential forms α, β of ranks p and q re-
spectively their wedge product is defined as

(α ∧ β)(v1, . . . , vp+q) =
1

(p+ q)!

∑
σ∈Sn

sgn(σ) [α(vσ(1), . . . , vσ(p)), β(vσ(p+1), . . . , vσ(p+q))].

Take an associated G-bundle E → M given by E = P ×ρ F a G action ρ. The
1-form ω gives us a way to act on forms α ∈ Ωp(M,F ) that satisfy the equivariance
condition R∗gα = ρ(g−1)α by

dωα = dα + ρ(ω) ∧ α.

This is the exterior covariant derivative associated to ω. In terms of A this can
be written as

dAs := ds+ ρ(A) ∧ s (3.6)

for a section s of the associated bundle E.
Given this, we define the curvature form Ω for a connection ω on a principal

bundle P to be
Ω := dωω = dω + ω ∨ ω. (3.7)

Further, a simple computation gives us the Bianchi identity,

dωΩ = 0. (3.8)

Further, we have the field-strength tensor F defined analogously to A as

F = s∗Ω

and satisfying the pulled-back Bianchi identity:

dAF = 0.

The following lemmas, which we take from [28], are important in translating from
a picture of k-forms on P and k-forms on M .

Lemma 3.4.12. Let α be a k form on a G-principal bundle P →M . α will descend
to a unique k-form α on M if the following are satisfied:
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• α(v1, . . . , vk) = 0 if vi is vertical for any i,

• R∗gα = α, i.e. α(Rgv1, . . . , Rgvk) = α(v1, . . . , vk).

In this case, we will have α = π∗α.

Proof. Let {vi}ki=1 be set of k vectors in TpM and {vi}ki=1 be a set of k vectors in
TxM for any x ∈ π−1(p) so that π∗vi = vi. We define

α(v1, . . . , vk) := α(v1, . . . , vk)

This is well-defined regardless of the choice of {vi} for given {vi} since by hypothesis
α is zero on the kernel of π∗. It is also independent of the choice of x ∈ π−1(p) by the
hypothesis of α’s invariance under right G action.

Lemma 3.4.13. If α ∈ Ω1(P, g) descends to a form α on M , then we have:

dωα = dα (3.9)

Proof. This follows from the following manipulation:

(dωα)(v1, . . . , vk) = (dα)(hv1, . . . , hvn)

= (dπ∗α)(hv1, . . . , hvn)

= (π∗dα)(hv1, . . . , hvn)

= (dα)(π∗hv1, . . . , π∗hvn)

= (dα)(π∗v1, . . . , π∗vn)

= (π∗dα)(v1, . . . , vn)

= (dα)(v1, . . . , vn).

3.4.3 Holonomy

A particularly important aspect of this thesis will be the action of Wilson loops when
inserted into gauge theories. Wilson loops are defined in terms of what is known as
the holonomy of a connection.

The concatenation of two paths γ1, γ2 such that γ1(1) = γ2(0) is the (piecewise
smooth) curve given by

γ′(t) :=

{
γ(2t) if t ≤ 1/2

γ(2t− 1) if 1/2 ≤ t ≤ 1.

Proposition 3.4.14. Given a principal G-bundle π : P → M , consider a smooth
path γ : [0, 1] → M . Given a point p ∈ π−1(γ(0)), there is a unique lift γ̃ so that
π(γ̃) = γ and γ̃′(t) ∈ Hγ̃′(t)P . This is called the horizontal lift of γ
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Proof. The result follows by noting that the condition that the lift be horizontal is a
first order differential equation with unique specified initial conditions. By smooth-
ness, there exists a unique solution.

This can be generalized to piecewise smooth curves similarly.

Definition 3.4.15. The holonomy group for the connection ω at point p ∈ P ,
denoted Holp(ω), is the subgroup of G consisting of elements that are holonomies
around some loop γ ⊆M .

The restricted holonomy group Hol0p(ω) is analogous, but considers only curves
that are contractible.

Note that both of these are indeed subgroups, with multiplication of elements
corresponding to the concatenation of the associated loops.

A connection is called irreducible if the centralizer of the holonomy group in G
is precisely the center Z(G).

Definition 3.4.16. A connection ω is called flat if Ω = 0.

It is easy to see that if a connection is flat then its holonomy around any con-
tractible closed loop will be zero by Stokes’ theorem. That is: the holonomy of a flat
connection captures information about the topology of M .

3.5 Chern-Weil Theory

In physics, relevant quantities such as the action, the instanton number, and the
gauge field Lagrangian are expressed in terms of polynomials of the field strength F .
Chern-Weil theory is concerned with the study of polynomials of the curvature form
Ω on the associated principal G-bundle that are invariant under the action of the
gauge group. These can be related to the cohomology classes of M .

3.5.1 Symmetric Invariant Polynomials on g

Consider g as an affine algebraic variety (∼= Cdim g), and consider the ring of functions
C[g]. Since G

	
g by Ad G-action, we naturally have a G-action on this space of

polynomials
C[g]�G.

Taking f(x)→ f(Ad gx). Polynomials that are fixed by this action are called invari-
ant polynomials on g, and are denoted by C[g]G.

Example 3.5.1. Take g = gln. The following are invariant polynomials on g:

• Tr xn for any n ∈ Z+,

• det(x− λ · 1) for any λ ∈ C.

Invariance under x→ gxg−1 follows from the cyclic properties of the trace in the first
case and the fact that the determinant map is a homomorphism in the second case.
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Definition 3.5.2. A polynomial f on C[g] is called homogenous of degree k if
f(ax) = akf(x) for x ∈ g, a ∈ C.

Observation 3.5.3. A homogenous degree k polynomial corresponds to an element
of Symk(g∗): a k-linear symmetric functional f :

∏k
i=1 g→ C.

We ask what it would mean to apply f to the g-valued 2-form Ω. By using
Definition 3.4.11 to construct a k-fold wedge products of 2-forms, we get a 2k form:

f(Ω)(v1, . . . , v2k) =
1

(2k)!

∑
σ∈Sn

sgn(σ) f
(
Ω(vσ(1), . . . , vσ(2)), . . . ,Ω(vσ(2k−1), . . . , vσ(2k))

)
.

We now note that f(Ω) satisfies the requirements of Lemmas 3.4.12 and 3.4.13 so
that

df(Ω) = dωf(Ω).

Since dω acts as a graded derivation

dω(α ∧ β) = (dωα) ∧ β + (−1)|α|α ∧ (dωβ),

and since dωΩ = 0 we get that f(Ω) is closed. Further, since f(Ω) descends to a
2k-form f(Ω), we get a closed 2k form on M , so that

[f(Ω)] ∈ H2k(M). (3.10)

We formulate the following proposition:

Theorem 3.5.4 (Chern-Weil). Let f be an invariant homogenous polynomial of de-
gree k on g and Ω be the curvature 2-form associated to some connection ω on a
principle bundle P . Then f(Ω) is a representative of a cocycle class in H2k(M)
independent of the choice of connection.

Proof. (Adopted from [29]) We have proved everything other than connection inde-
pendence. For this, let ω0, ω1 be two different connection 1-forms on P . We can
perform a homotopy and use the fact that cohomology is homotopy invariant. Con-
sider P as a principal G-bundle on M × [0, 1] and let ω′ := tp∗ω0 + (1− t)p∗ω1 be the
1-form given by pulling back the appropriate combination of ω0 and ω1. Then using
ιt : M →M × [0, 1] sending p→ (p, t), f(Ω′) can be pulled back from M × [0, 1] to a
2k-form on M . Since ι0 and ι1 are homotopic:

ι∗0f(Ω′) ∼ ι∗1f(Ω′)

must lie in the same cohomology class. This are easily seen to be equal to f(Ω0) and
f(Ω1), respectively.

We have the following corollary.

Corollary 3.5.5. For a manifold M , f(Ω1) is locally exact on each coordinate patch.
The form K so that dK = f(Ω1) on a given Uα is the Chern-Simons form.
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This form will play an important role in defining the instanton number for a
principal G-bundle over S4.

3.5.2 Chern Classes

Let P be a principal G bundle for G real or complex and let E be an associated
complex vector bundle on which G acts nontrivially. For G semisimple, this can be
taken to be the adjoint bundle, but also for G a classical, linear algebraic group, we
can take the bundle to be associated to the defining representation. Let n denote the
rank of E.

In either case, the curvature form F ∈ Ω2(M, g) corresponding to a connection
on E gives rise to the following polynomial in F that is easily seen to be symmetric-
invariant:

c(F ) := det(1− tF

2πi
) (3.11)

This polynomial is not homogenous, but rather splits into a sum of homogenous
polynomials in even degree:

c(F ) = 1 + tc1(F ) + t2c2(F ) + · · · =
n∑
k=1

tkck(F ) (3.12)

where ck ∈ Ω2k(M). Clearly ck(F ) = 0 if 2k > dimM .
By using simple matrix identities such as exp TrA = det expA one can arrive at

a more explicit form of the first few of these polynomials

c(F ) = 1 + i
Tr (F )

2π
t+

Tr (F ∧ F )− Tr (F ) ∧ Tr (F )

8π2
t2 + · · ·+ i detF

2π
tn

By Theorem 3.5.4, the cohomology classes [ci(F )] are independent of the connec-
tion used to define F . Consequently, we can define

Definition 3.5.6 (Chern class). The Chern classes for the bundle E are the coho-
mology classes in H∗(M) associated with each ci(F ). We write

ci(E) := [ci(F )].

The Chern numbers for the bundle E are given by

ci(E) :=

∫
M

ci(F )

and are again independent of the connection.

Proposition 3.5.7. Let E =
⊕m

j=1Ej. Then

c(E) = c(E1) · · · · · c(Em)

where the product here is the cup product in cohomology.
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Proof. Because the gauge group acts as block matrices, the field strength tensor can
be decomposed into blocks acting separately on each Ej so that the determinant
factors:

det

(
I − tF

2πi

)
= det

(
I − tF1

2πi

)
∧ · · · ∧ det

(
I − tFm

2πi

)
.

Thus, the associated Chern class is a cup product of the cohomology classes corre-
sponding to each differential form in this wedge.
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Chapter 4

Instantons and the ADHM
Construction

Instantons are objects of significant interest to both physicists and mathematicians.
For physicists, they represent classical solutions to the equations of motion of extremal
action. In the context of field theory, and more specifically Yang-Mills Field Theory,
instantons correspond to nontrivial field configurations on a given spacetime manifold
that minimize the action.

A useful picture comes from quantum mechanics, of a particle in a double-well
potential. Having a particle localized at the bottom of either well gives rise to a
classical solution. Perturbative corrections around this minimum due to the quantum
theory may give rise to harmonic-oscillator-type structure within the well, but is
completely unable to account for the possibility of quantum tunneling across the
barrier into the second well of the potential. To account for this, we must understand
the space of classical solutions in addition to performing perturbation theory.

Mathematically, one way that this can manifest itself is in the fact that e−1/x has
every higher derivative vanish as x→ 0+. It is the same phenomenon that allows for
the existence of bump functions in real analysis and also for asymptotic expansions
in various areas of physics and engineering.

Donaldson used the interesting mathematical properties of Yang-Mills instantons
on R4 to prove novel and extremely surprising statements about the nontrivial smooth
structures that can be associated to R4 uniquely among all Euclidean spaces [30].
Ward’s conjecture [31] states that perhaps all integrable ordinary and partial differ-
ential equations come from the integrable structure of Instantons on R4 given by the
ADHM construction discussed in this chapter.

For the purposes of this thesis, instantons will not themselves play a central role,
but their close relatives in three dimensions will: magnetic monopoles. In order
to understand the construction of monopoles, however, it will be important to first
understand the famous self-duality equation and ADHM construction of instantons.
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4.1 Instantons in Classical Yang-Mills Field The-

ory

4.1.1 The Equations of Motion

Yang-Mills gauge theory is a theory with gauge group G = SU(n). In four dimensions,
the objects of study are bundles associated to some principal G-bundle on Euclidean
4-space M = R4. R4 has a Riemannian metric, so we have a Hodge-star operator
giving an isomorphism:

? : Ωk → Ω4−k.

From the prior section, gauge theory on R4 involves a connection 1-form A trans-
forming in the ad g representation. From this, we obtain the field-strength F , again
transforming in the adjoint action, by applying the covariant exterior derivative:

F = dAA = dA+ [A,A] (4.1)

Both F and ?F are g-valued 2-forms. On the other hand F ∧?F is a g-valued 4-form.
Taking the trace of this over the Lie algebra gives a 4-form that can be integrated over
M , TrF ∧ ?F . This is equivalently denoted by ||F ||2 since Tr (F ∧ ?F ) corresponds
exactly to the inner product norm on g-valued 2-forms induced by the killing form.

Proposition 4.1.1. Tr (F ∧ ?F ) is gauge independent and globally defined.

Proof. Since F transforms in the adjoint representation, the cyclic property of the
trace gives:

Tr (F ∧ ?F )→ Tr (gFg−1 ∧ g ? Fg−1) = Tr (F ∧ ?F ).

It is important to recall that the field strength corresponds to a curvature 2-form
on some principal SU(n)-bundle, P . Given such a field strength 2-form on M , it can
be pulled back to any bundle E associated to P .

In Yang-Mills theory, the action is given by:

S[A] :=
1

8π

∫
M

Tr (F ∧ ?F ) (4.2)

We aim to find A so that SE[A] is a minimum. To do this, we use standard calculus
of variations. Consider a small perturbation A+ tα.

F [A+ tα] = d(A+ tα) + A ∧ A+ t[A,α] +O(t2)

= F [A] + t(dα + A ∧ α)

= F [A] + dAα
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so that to order t:

||F [A+ tα]||2 = ||F [A+ tα]||2 + 2t(F [A], dAα)

⇒ (F [A], dAα) = 0 ∀α.

The adjoint of the covariant derivative is the codifferential ?dA?, so that we can
equivalently write this as:

∀α (?dA ? F [A], α) = 0⇒ dA ? F = 0.

Except for the case of an abelian gauge theory, these will in general give second-
order nonlinear differential equations in the connection that are difficult to solve for
explicitly. Though we will not be able to easily talk about general field configurations,
we will be able to talk about field configurations that are minima for the action on
the principal SU(n) bundle P that the theory is defined on. To do this, we must
first understand a connection between a certain integral of the field strength and the
topology of P .

4.1.2 The Instanton Number

The action is defined by
∫
M

Tr (F∧?F ). Considering F∧F gives us another important
quantity.

Definition 4.1.2 (Instanton Number). The instanton number k for a given field
configuration is given by

k :=
1

8π2

∫
M

Tr (F ∧ F ). (4.3)

Recall from the definition of Chern classes in 3.5.6 that the Chern numbers are
independent of the choice of connection. Recall further that the first few Chern
numbers were given by:

c1(E) :=
i

2π

∫
M

Tr (F ) c2(E) :=
1

8π2

∫
M

[Tr (F ∧ F )− Tr (F ) ∧ Tr (F )]

Note that since su(n) consists of only traceless matrices, c1 vanishes, and thus for any
associated bundle su(n)-bundle E we have:

c1(E) = 0 c2(E) =
1

8π2

∫
M

Tr (F ∧ F ) = k.

Thus in our case, the instanton number is simply the second Chern class, and in
particular is a topological invariant of the bundle E, independent of the connection.
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4.1.3 The ASD Equations

We are now in a place where we can understand the equations defining the local
minima of the action. Note first by basic properties of ? that

? ? : Ω2(M, g)→ Ω2(M, g) (4.4)

is equal to 1 for M = R4. This means that this operator has two eigenspaces corre-
sponding to +1 and −1, giving a decomposition

Ω2(M, g) = Ω2(M, g)+ ⊕ Ω2(M, g)−. (4.5)

So in general F can be expressed as a sum F = F++F− of 2-forms in these two spaces.
Moreover since these two spaces are orthogonal by the Hermiticity of ?, (F+, F−) = 0.
On one hand, then:

S[A] =

∫
M

Tr (F ∧ ?F )

=

∫
M

Tr ((F+ + F−) ∧ ?(F+ + F−))

=

∫
M

Tr (F+ ∧ ?F+) +

∫
M

Tr (F+ ∧ ?F+)

Note that the action integral is the integral of ||F ||2 is is necessarily positive. Now
consider the following manipulation:

8π2k =

∫
M

Tr (F ∧ F )

=

∫
M

Tr ((F+ + F−) ∧ (F+ + F−))

=

∫
M

Tr (F+ ∧ F+) +

∫
M

Tr (F− ∧ F−)

=

∫
M

Tr (F+ ∧ F+) +

∫
M

Tr (F− ∧ F−)

=

∫
M

Tr (F+ ∧ ?F+)−
∫
M

Tr (F− ∧ ?F−)

=

∫
M

||F+||2 −
∫
M

||F−||2.

Using the triangle inequality we get:

S[A] ≥ |8π2k|. (4.6)

It is easy to see that equality will be satisfied iff F = F+ or F = F−.

47



Note that any solution of the self-dual equation F = F+ can be obtained from a
solution of the anti-self-dual equation F = F− and vice-versa by performing a spatial
flip x1 → −x1.

We thus have the anti-self-dual equations for instantons:

? F = −F, (4.7)

or component-wise:
F12 + F34 = 0

F14 + F23 = 0

F14 + F32 = 0.

(4.8)

We see that the instanton number depends on the principal bundle, and that the
instanton number of the trivial bundle is zero.

Note. su(n)-instantons do not exist in Minkowski space R3,1, since ?2 = −1 would
have eigenvalues ±i and F = ±iF would contradict that F is a real object as an
su(n)-valued 2-form. Still, it will turn out that (after Wick rotation) instantons on
Euclidean space R4 have meaningful roles in understanding the path integral approach
to field theory on R3,1.

4.1.4 Classifying Principal Bundles over S4

In our above analysis, and the construction of instantons that is to follow, we make
several assumptions about F and A.

• For the above integrals to have made sense, we must require that F (~x) decays
“sufficiently quickly” as |~x| → ∞.

• Consequently we must also have A “tend to a constant”. In the language of
gauge theory, A must become “pure gauge” gdg−1 as |~x| → ∞.

• We thus restrict the gauge group to consist of only framed gauge transforma-
tions, defined next.

Definition 4.1.3. A framed gauge transformation on R4 is one that tends to a
constant group element as |~x| → ∞.

We first change the setting from R4 to S4. Because of the decay of the fields,
extending the bundle to S4 with framed gauge transformation will give a well-defined
field strength and vector potential on S4. The following argument is directly from
[27].

We will understand how to compute the instanton number on S4 by using a
clutching function defined on S3 connecting the two hemispheres of S4. The following
theorem will be helpful:

Theorem 4.1.4 (Bott). Let G be a simple Lie group containing an SU(2) subgroup.
Then every map S3 → G is homotopic to a map S3 → SU(2).
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Now note that on an open disk, the form Tr (F ∧ F ) (by virtue of being locally
exact) can be written as

dTr

[
F ∧ A− 1

3
A3

]
= Tr (F ∧ F )

where A3 = A ∧ A ∧ A. Now take DN and DS two disks overlapping on S3. The
G-bundle must have an overlap function ρ : S3 → G.

The integral becomes:

8πk =

∫
S4

Tr (F ∧ F )

=

∫
DS

Tr (FS ∧ FS) +

∫
DN

Tr (FN ∧ F )

=

∫
∂DS

Tr

[
FS ∧ AS −

1

3
A3
S

]
+

∫
∂DN

Tr

[
FN ∧ AN −

1

3
A3
N

]
=

∫
S3

(
Tr

[
FS ∧ AS −

1

3
A3
S

]
+ Tr

[
FN ∧ AN −

1

3
A3
N

])
.

After some manipulations, changing AN , FN to AS, FS by transforming according to
ρ, this all reduces to:

k = − 1

24π2

∫
S3

Tr ((ρdρ)3)

and this can now be expressed as the pullback of ρ acting on the Maurer-Cartan form
(defined in 3.2) of some SU(2)-homotopic subgroup of G by Bott’s theorem. Hence,

k = − 1

24π2

∫
S3

ρ∗Tr (Θ3) =
deg ρ

24

∫
SU(2)

Tr (Θ3).

On SU(2), the triple wedge of the Maurer-Cartan form gives a volume form whose
integral is exactly 24π2.

Proposition 4.1.5. The homotopy classes of maps S3 → SU(2) are classified by
integers.

Proof. This follows from noting that SU(2) ∼= S3 and π3(S3) = Z.

Consequently, we have our result.

Proposition 4.1.6. The instanton number k must be an integer equal to the negative
of the degree of the clutching function ρ defining the principal G-bundle on S4.

With the stage set, we will now discuss the method for constructing all finite-action
instantons on R4. This is the ADHM construction of Atiyah, Hitchin, Drinfeld,
and Manin [32].
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4.2 Construction of Instantons

In the ADHM construction, we make use of an identification R4 ∼= C2.
We will show how this construction will give a vector bundle E of rank n over S4

with topological charge −k. The proof that this exhaustively gives all instantons can
be found in [33].

4.2.1 The Data

Let x1, x2, x3, x4 parameterize a R4, and write this as C2 using z1 = x2 + ix1, z2 =
x4 + ix3. In terms of the complex coordinates, we get

D1 :=
1

2
(dA2 − idA1)

D2 :=
1

2
(dA4 − idA3)

(4.9)

We can express anti-self duality of Fµν in terms of these D1, D2 through two equations:

[D1, D2] = 0

[D1, D
†
1] + [D2, D

†
2] = 0

(4.10)

We will now describe how to obtain a holomorphic vector bundle of rank n on S4

together with a connection 1-form on this bundle that will give a solution to the ASD
equations of motion.

Definition 4.2.1 (ADHM System). Let U be a 4-dimensional space with complex
structure. An ADHM System on C2 is a set of linear data:

1. Vector spaces V,W over C of dimensions k, n respectively.

2. Complex k × k matrices B1, B2, a k × n matrix I, and an n× k matrix J .

We can see this diagrammatically by the following quiver:

W V

I

J

B1

B2

A set of ADHM Data is an ADHM system if it satisfies the following constraints:

1. The ADHM equations:

[B1, B2] + IJ = 0

[B1, B
†
1] + [B2, B

†
2] + II† − J†J = 0

(4.11)
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2. For (x, y) ∈ C2 with x = (z1, z2), y = (w1, w2), the map:

αx,y =

 w2J − w1I
†

−w2B1 − w1B
†
2 − z1

w2B2 − w1B
†
1 + z2

 (4.12)

is injective from V to W ⊕ (V ⊗ C2) while

βx,y =
(
w2I + w1J

† w2B2 − w1B
†
1 + z2 w2B1 + w1B

†
2 + z1

)
is surjective from W ⊕ (V ⊗ C2) to V .

It is an easy check to see

Observation 4.2.2. If B1, B2, I, J satisfy the above conditions, then for g ∈ (k), h ∈
SU(n),

(gB1g
−1, gB2g

−1, gI, Jg−1)

also satisfies the ADHM equations.

We can recast the ADHM equations into a more succinct form.

Proposition 4.2.3. The ADHM equations are satisfied iff

0 V W ⊕ (V ⊗ C2) V 0
αx,y βx,y

is a complex, namely β ◦ α = 0.

Proof. We need both βα = 0 as well as surjectivity of β and injectivity of α. The
equation βα = 0 reduces to a quadratic polynomial in the w1, w2 with the two ASD
equations emerging as coefficients.

Such a sequence is also referred to as a monad in the literature.

4.2.2 The Construction

Theorem 4.2.4 (ADHM construction). There is a one-to-one correspondence be-
tween equivalence classes of solutions to the ADHM system and gauge equivalence
classes of anti-self-dual SU(n)-connections A with instanton number k.

A full proof of this theorem is beyond the scope of this thesis. Nonetheless, we
show how such a set of data gives rise to a 2-dimensional SU(n)-associated bundle E
over S4.

Succinctly: the only nontrivial cohomology group of this complex is ker βx,y/imαx,y.
This gives a vector bundle over C2 × C2 which can be identified with H2. An equiv-
ariance condition on the data under quaternionic action will let this descend to a
vector bundle on HP1 ∼= S4. This 2D complex vector bundle will be associated to
some appropriate principal bundle and have instanton number k.
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In quaternionic language, the ADHM equations become easier to work with. To
each x = (q1, q2) ∈ C2, we can associate a quaternionic operator acting on C2 as:

(q1, q2) 7→ z =

(
q2 −q1

q2 q2

)
. (4.13)

For (q1, q2) 6= 0 this is a rank two linear operator.
We can we write the ADHM equations by defining an operator:

∆x,y :=
(
β†x,y αx,y

)
. (4.14)

Then it is easy to see that (with x = (z1, z2) and y = (w1, w2))

∆x,y = aw + bz (4.15)

where w, z are the quaternionic matrices corresponding to the complex pairs
(w1, w2), (z1, z2) and

a =

 I† J

B†2 −B1

B†1 B2

 , b =

 0 0
Ik 0
0 Ik

 (4.16)

are the by n + 2n by 2k matrices, with Ik here denoting the identity. We similarly
have 1

∆†x,y =

(
βx,y
α†x,y

)
= (aw + bz)†. (4.17)

Importantly, the kernel of this operator is ker βx,y ∩ kerα†x,y which can be rewritten
as ker βx,y ∩ im(α)⊥x,y. By the definition of orthogonal complement together with
βx,y ◦ αx,y = 0 ⇒ imαx,y ⊆ ker βx,y, this intersection is seen to be isomorphic to
ker βx,y/imαx,y.

We see that x, y can be interpretted as two quaternions on H2. We have an
action of the quaternionic operators on this space by (x, y) → (xq, yq). The space
ker ∆†x,y → (x, y) gives rise to a rank n vector bundle Ẽ on H2. Observe of the
following equivariance condition:

∆†xq,yq = (awq + bzq)† = q†∆†. (4.18)

For q 6= 0, q† maintains full rank, so the kernel of ∆†xq,yq is the same as the kernel

of ∆†x,y. This means that Ẽ descends to a vector bundle on HP1 ∼= S4. This is our
desired construction.

Moreover, if we take an orthonormal basis of ker ∆† ⊆ W ⊕ (V ⊗ C2), we can
construct a (n+2k)×n matrix U that satisfies the orthonormality condition U †U = 1.

1The notation here is suggestive. ∆† is a Dirac operator, and solutions to the ADHM equations
are Ψ(x, y) so that ∆†Ψ = 0.
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Then it can in fact be shown that our connection 1-form is defined in terms of U as:

A := U † dU.

53



Chapter 5

Magnetic Monopoles and the
Equations of Bogomolny and Nahm

With the machinery of gauge theory and instantons developed, the goal of this chapter
is to give the reader a gentle introduction to the notable discoveries in the study of
monopoles on R3.

In section 1 we give two derivations of the Bogomolny equations. The first ap-
proach derives the equations directly from the anti-self-duality (ASD) conditions for
instanton solutions in R4 by treating the fourth component of the connection 1-form,
A4, as a scalar field φ and ignoring translations ∂4 along the x4 direction. The second
approach works directly with the action to derive not only the Bogomolny equations
but also an integrality condition on the asymptotics of φ that allow su(2) monopole
solutions, much like instantons, to be characterized by a single number k: the mag-
netic charge1.

In section 2, we then study the (moduli) space of directed lines on R3 and make
the identification between this space and the (holomorphic) tangent bundle of the
Riemann sphere TCP1. From here, we motivate Hitchin’s use of a 1-dimensional
scattering equation along a line (Dt− iφ)s = 0 to characterize monopole solutions to
the Bogomolny equations as giving rise to a holomorphic vector bundle Ẽ over TCP1

corresponding to the solution space of the scattering equation for a given line. An
asymptotic analysis of the solutions to this equation naturally leads to both Hitchin’s
spectral curve Γ and Donaldson’s rational map theorem.

In section 3, we motivate the Nahm transform by analogy to the ADHM construc-
tion for instantons from the prior chapter. The story is a little bit more complicated
here, since rather than a reduction to linear data, we have a reduction to a Sobolev
space of functions on the line segment (0, 2). The Nahm equations are the related to
the spectral curve Γ. We finally show how a solution of Nahm’s equation gives rise
to a monopole solution (A, φ) on R3.

1For general su(n) instantons, n− 1 numbers are required, associated to the Cartan subalgebra
of g. We restrict to the su(2) case, as most authors do, although the generalization of many of these
statements to other real Lie groups is not difficult. For the purposes of the Langlands program su(2)
will play a special role [19].
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Bogomolny Equations

Rational Functions Rk

Nahm’s Equations Spectral Curve Γ

Scattering Equation [Hitchin]ADHM-like construction [Nahm]

Sheaf Cohomology [Hitchin]

Figure 5.1: The triangle of ideas in the construction of monopoles.

The main ideas relating to understanding the Bogomolny equations can be simply
diagrammed in the triangle of Figure 5.1.

Historically, the Bogomolny equations were first introduced by Bogomolny [34]
together with Prasad and Sommerfield [35] in their studies of spherically-symmetric
single-monopole solutions to nonabelian gauge theories. Explicitly, the su(2) single-
monopole solution takes the form

A =

(
1

sinh |x|
− 1

|x|

)
εijk

xj
|x|
σkdx

i

φ =

(
1

tanh |x|
− 1

|x|

)
xi
|x|
σi

where σi are the generators of su(2) and we are using Eisntein summation convention.
In [36], Hitchin considered the complex structure of geodesics (i.e. directed lines)

in R3 and used this together with the previous scattering ideas in the Atiyah-Ward
Ak ansatz [37] to develop his approch using the spectral curve (righthand arrow in
Figure 5.1). In a separate approach, Nahm [38] made use of the ADHM ansatz to
formulate the solutions to the Bogomolny equations for su(2) in terms of solutions to
a coupled system of differential equations, now known as the Nahm equations:

dTj
ds

(s) = εijk[Tj(s), Tk(s)]

where Ti for i ∈ {1, 2, 3} are k× k-matrix valued functions of s on the interval (0, 2),
subject to certain conditions. This is the lefthand arrow of Figure 5.1.

The equivalence of these two approaches, corresponding to the bottom arrow in
Figure 5.1 was demonstrated by Hitchin in [39]. Hitchin considered the spectral
curve of a monopole and constructed a set of Nahm data associated to it, from which
one could obtain Nahm’s equations. This construction involved methods from sheaf
cohomology for the construction of a necessary set of bundles Ls over TCP1. This
general circle of ideas for SU(n) monopoles was completed in [40].

Remarkably, these three various descriptions of monopoles can all be related us-
ing relatively straightforward constructions to a fourth object: the space of rational
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functions of a complex variable z with denominator of degree k. This is the rational
map constructed by Donaldson [41].

In general, the role of the Nahm transform in understanding the moduli space
instanton-like solutions in R4/Λ for Λ a subgroup of translations in R4 is as follows:

Yang-Mills(-Higgs) on R4/Λ Nahm Equations on (R4)∗/Λ∗
Nahm Transform

5.1 Monopoles on R3

We give here an exposition to magnetic monopoles, following the book of Atiyah and
Hitchin [42].

5.1.1 From the Reduction of the ASD Equations

Taking the source-free Yang-Mills equations on R4, consider solutions that are trans-
lation invariant under one coordinate, say x4. There are two ways forward: either by
immediately considering the ASD connections together with translation invariance or
by building up the action and seeing how the 3D analogue of the ASD connections
emerges.

Observation 5.1.1 (ASD Connection). The ASD conditions for instantons on R4

can be explicitly written as

F14 = −F32, F24 = −F13, F34 = −F21 (5.1)

For F translation invariant w.r.t. x4, we get

∂2A3 − ∂3A2 + [A2, A3] = ∂1A4 + [A1, A4] (5.2)

and the two other permutations. Taking A4 = φ gives that all three of these equations
can be written as

? F = dAφ. (5.3)

These are the Bogomolny equations. Any solution to this gives us a translation-
invariant instanton in R4. Note that these do not satisfy the decay conditions neces-
sary for the instantons of the ADHM construction, so the instantons constructed in
the previous chapter do not give rise to nontrivial monopoles in R3.

5.1.2 From the Yang-Mills-Higgs Action on R3

To derive an effective action for the R3 field theory from translation invariance in R4

we first write:
A4D = A1 dx

1 + A2 dx
2 + A3 dx

3 + φdx4.

Under the translation assumption, the spatial symmetry group of 4D Euclidean trans-
formations ISO(4) = R4oSO(4) reduces down to the 3D group ISO(3) = R3oSO(3).
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With this reduced symmetry, the x4 component of A (namely φ) remains invariant
under SO(3) transformations and does not mix with the other three components.
Thus, we have a reduction of A from lying in Ω1(R4), as a fundamental representa-
tion of SO(4,R) fiberwise to lying in an inhomogeneous direct sum Ω1(R3)⊕ Ω0(R3)
of the fundamental SO(3,R) representation of SO(3) with the trivial one.

Note that both A and φ are still valued in g and transform in the adjoint repre-
sentation. The covariant derivative becomes (dA)3D = d3D + A, since φ dx4 = 0 on
any vector in R3. Now note that the 4D curvature form becomes

(dA)3D(A3D + φ) = F3D + (dA)3Dφ. (5.4)

From now on we write F for F3D and dA for (dA)3D. The associated action is then

S =
1

8π

∫
Tr [F ∧ ?F + (dAφ) ∧ ?(dAφ)] =

1

8π

∫
[(F, F ) + (dAφ, dAφ)] . (5.5)

where (Ω,Ω) := Tr[Ω ∧ ?Ω] denotes the inner product on p-forms induced by the
metric on R3. From now on, we restrict to the case g = su(2), though many of the
more general results for su(n) follow analogously.

Letting BR be ball of radius R centered at the origin in R3, we recover the action
as the limit of the integral:

lim
R→∞

1

8π

∫
BR

[(F − ?dAφ, F − ?dAφ) + 2 (?dAφ, F )]

Before tackling this last term, make the following observations:

Observation 5.1.2. For the above action to be well-defined, we require |F (~x)| =
O(|x|−2) and |dφ(~x)| = O(|x|−2). This implies that the killing norm of φ, |φ|, tends
to a constant value as |x| → ∞.

Observation 5.1.3. If (A(~x), φ(~x)) is solution to the equations of motion, then
(cA(~x/c), cφ(~x/c)) is also a solution.

For this reason, without loss of generality we may assume |φ(~x)| → 1 as |x| → ∞.
For R large, this makes φ|SR : S2

R → S2 map from the sphere of radius R in R3 to the
unit sphere S2 in su(2).

Let’s make one more observation before tackling the second term

d(φ, ?F ) = dTr[φF ]

= Tr[dφ ∧ F − φ dF ]

= Tr[dAφ ∧ F − φA ∧ F + φA ∧ F ]

= (dAφ, ?F )

= (?dAφ, F ).

(5.6)
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This implies that the second term can be written as a boundary term:∫
BR

(?dAφ, F ) =

∫
S2
R

Tr[Fφ].

Note φ acting on a bundle E transforming in the fundamental representation of
su(2) has two eigenspaces of opposite imaginary eigenvalues, and by assumption that
|φ| → 1, these eigenvalues cannot both be zero. Thus, they cannot cross and this
gives us two well-defined line bundles L+, L− over S2

R corresponding to the positive
and the negative eigenvalues.

Proposition 5.1.4. E = L+ ⊕ L− has vanishing first Chern class c1(E) = 0.

Proof. This follows from the fact that su(2) is traceless.

Corollary 5.1.5. The first Chern class of L+ is c1(L+) = +k and L− is c1(L−) = −k
for an integer k. 2.

Proof. After picking an orientation so that the first Chern class of L+ is positive, the
corollary immediately follows upon observing that the Chern classes of complex line
bundles over the sphere are always integral, and the first Chern class of a direct sum
is the sum of the individual first Chern classes.

Proposition 5.1.6. limR→∞
∫
S2
R

(F, φ) = ±4πk.

Proof. By definition, the first Chern class of a vector bundle E is i
2π

∫
SR

Tr(Ω) for Ω
the curvature two-form associated to E. Now note that on the eigenbundles of φ, we
have that since |φ| → 1, it acts as ±i (σ3 up to gauge) so that we must have (from
before)

lim
R→∞

i

∫
S2
R

Tr(FL+)− i
∫
S2
R

Tr(FL+) = ±(2πkc1(L+) + 2πkc1(L−)) = ±4πk. (5.7)

As we take R→∞ , this proposition gives us an action of

S =
1

8π

∫
BR

||F − ?dAφ||2 ± k. (5.8)

In this case, the absolute minimum is achieved when (A, φ) satisfy the following:

2It should be noted that (besides the non-monopole case of k = 0), this makes the bundle E
nontrivial. This means that E cannot just be the restriction of a (necessarily trivial) vector bundle
over R3. To understand this: the non-triviality of E can be seen to come from singularities induced
on the vector bundle by the insertion of monopole. In the k = 1 BPS case, this corresponds to E
being a nontrivial bundle on R3\{0}
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Proposition 5.1.7 (Bogomolny Equations). The monopole solutions for Yang-
Mills theory on R3 satisfy

? F (~x) = dAφ(~x) (5.9)

subject to the constraints (after rescaling of axes and fields) that:

1. |φ(~x)| → 1− k
2r

as |x| = r →∞,

2. ∂|φ(~x)|/∂Ω = O(r−2), where Ω denotes any angular variable in polar coordi-
nates,

3. |dAφ(~x)| = O(r−2).

The norm |φ| is the standard killing norm on g = su(2). These equations can also
describe su(n) monopoles, with adapted decay conditions.

Note under φ→ −φ we get that the Bogomolny equations with k ≤ 0 become the
anti-Bogomolny equations and F = − ? dAφ and k ≥ 0. Further, spatial inversion
together with A → −A can flip these to the Bogomolny equations with k ≥ 0.
Therefore, it is enough look at solutions to the Bogomolny equations for k ≥ 0.

Definition 5.1.8 (Magnetic Charge). The positive integer k is called the monopole
number or magnetic charge of the monopole solution.

Though our analysis has been for su(2), the u(1) case has the same equations
characterizing a monopole solution.

Observation 5.1.9. Note when g = u(1), and using the notation Bk = εijkFij the
Bogomolny equation becomes B = ∇φ, giving the first known magnetic monopole, the
Dirac Monopole:

φ =
k

2r
.

Note. We aim to study the solutions of the Bogomolny equations modulo the action
of the gauge group G. However, not all gauge transformations preserve the decay
conditions on dAφ and |∂φ/∂Ω|. Consequently, we study the Bogomolny equations
modulo the restricted gauge group G̃ of transformations that tend to a constant
element g as |x| → ∞.

5.2 Hitchin’s Scattering Equation, Donaldson’s

Rational Map, and the Spectral Curve

5.2.1 The moduli spaces Nk and Mk

We make the following notational definition

Definition 5.2.1. Let Nk be the space of gauge-equivalent su(2) monopoles of mag-
netic charge k.
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This is our main object of study in this chapter.
This section involves studying the solutions of “scattering-type” equations along

directed lines in R3. Consequently, the covariant derivative operator when restricted
to a line, say along a line parallel to the x1 axis, becomes:

dA →
d

dx1

+ A1 (5.10)

In this case, we can make a gauge transformation

A→ gAg−1 + g−1dg

so as to make A1 = 0. This simplifies the covariant derivative along lines parallel to
the x1 axis to become just dA → d

dx1
.

A copy of U(1) still remains to act on A2 and A3. Thus, as x1 →∞, because the
decay conditions on φ, we have that any gauge transformation tends to a constant
element in this U(1) subgroup. In this context, define:

Definition 5.2.2 (Framing). Define a framed gauge transformation [39, 43] to
be one that tends to the identity as x1 →∞.

If we only identify solutions modulo framed gauge, then the asymptotic U(1)
element as x1 →∞ will differentiate between solutions that are otherwise equivalent
modulo the full gauge group. We thus make a definition

Definition 5.2.3. DefineMk to the the space of solutions to the Bogomolny equations
modulo framed gauge. This is fibered over Nk with fiber S1.

S1 Mk Nk

Proof. We have seen that upon choosing A1 = 0, gauge transformations can still have
an asymptotic value in a U(1) ∼= S1 subgroup. Thus, quotienting out by only framed
gauge transformations to get Mk leaves a piece of S1 information that Nk does not
have. We will call this S1 element the phase of a given monopole solution.

Note. Mk depends on a choice of oriented x1-axis in R3. A more coordinate-free way
of defining this extension Mk of Nk is given in [42]. It relies on a simple observation
from the previous section that asymptotically the restriction of E over S2

R is a direct
sum of k-twisted bundles: Ek = L−k ⊕ Lk. The automorphism group in SU(2) fixing
this direct sum is exactly the U(1) diagonal action:(

eiθ 0
0 e−iθ

)
Thus, up to this U(1) automorphism determining phase, every k-monopole solution
is asymptotically equivalent to a fixed Ek. Informally: restricting the gauge transfor-
mation group so as to retain this automorphism information gives us Mk = Nk × S1.
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5.2.2 Hitchin’s Scattering Transform

In [36] Hitchin made use of a scattering method to show the following equivalence:

Theorem 5.2.4 (Hitchin). Given a solution (A, φ) to the Bogomolny equations satis-
fying the criteria of 5.1.7, then let ` be a directed line in R3 pointing along a direction
n̂ with distance parameterized by t and consider the following scattering equation
along `

(Dn̂ − iφ)ψ = 0. (5.11)

Here Dn̂ is a restriction of the covariant derivative dA to act along `, φ is the scalar
field restricted to `, and ψ is a section of the restriction of the vector bundle E
associated to the fundamental representation C2 to the line `.

The solutions to this equation form a complex two-dimensional space Ẽ` of sec-
tions. If A, φ satisfy the Bogomolny equations, then Ẽ` is a holomorphic vector bundle
over the space of directed lines in R3.

There are several propositions that need to be developed before this theorem can
be made sense of. Firstly,

Proposition 5.2.5. The space of directed lines in R3 forms a complex variety iso-
morphic to the tangent bundle to the Riemann sphere TCP1 with a real structure
σ.

Proof. Once a normal direction n̂ is chosen, a directed line ` in R3 is uniquely deter-
mined by a vector ~v ⊥ n̂. Thus our space is

{(n, v) : |n| = 1, u · v = 0} (5.12)

Clearly n̂ sits on a sphere S2 and (n̂, v) form TS2. It is sufficient to find a complex
structure to make this into the complex variety TCP1. We will form a complex
structure on CP1 which will lift to the tangent bundle. The complex structure J
acting on a point (n, v) is given by taking J(v) = n̂× v. This corresponds exactly to
the complex structure on the holomorphic tangent bundle of the Riemann sphere.

The real structure σ comes from reversing the orientation of a line (n̂, v) →
(−n̂, v). It is easy to see σ2 = 0, and since it reverses orientation in R3 is takes
J → −J .

Example 5.2.6. To make this picture clearer for the reader, let’s note that given a
point (x1, x2, x3), each direction n̂ has a unique line (n̂, v) passing through this point.
Thus, a point ~x ∈ R3 determines a section s : CP1 → TCP1. Explicitly, picking a
local coordinate ζ on CP1 we get:

s(ζ) = ((x1 + ix2)− 2x3ζ − (x1 − ix2)ζ2)
d

dζ
. (5.13)

The fact that the coefficient is a degree 2 polynomial in ζ is a consequence of the tan-
gent bundle being a bundle of degree 2 over CP1. Note further that this corresponds
to describing R3 as the space of real holomorphic vector fields on the Riemann sphere,
namely so(3,R).
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Next, let us try to study this scattering equation. It will be useful to restrict,
without loss of generality, to lines parallel to the x1 axis.

Proposition 5.2.7. The solutions to the scattering equation on a line form a two
dimensional space.

Proof. In the gauge A1 = 0 developed before, this is an easy consequence of the fact
that E is rank two and so upon decomposing E into eigenspaces of φ, L+ ⊕ L−, the
scattering equation decouples into two linear differential equations:[

d

dx
− iλj(x1)

]
sj = 0, j = 1, 2. (5.14)

Because these equations are both linear and first-order, they each have a one-
dimensional space of solutions.

We can now understand the vector bundle that Hitchin constructed on TCP1.

Observation 5.2.8. Let Ẽ → TCP1 denote the two-dimensional space of solutions to
the scattering equation associated to a given line in R3. This forms a vector bundle.

We are now ready to prove Hitchin’s theorem.

Proposition 5.2.9 (Construction of a Holomorphic Vector Bundle). If (A, φ) satisfy
the Bogomolny equations, then Ẽ is holomorphic.

Proof. Hitchin appeals to a theorem of Nirenberg [44]: that it is sufficient to construct
an operator

∂ : Γ(TCP1, Ẽ)→ Γ(TCP1,Ω(0,1)(Ẽ)).

The existence of ∂ on Ẽ would give Ẽ a holomorphic structure for which ∂ plays the
role of the anti-holomorphic differential. Let s be a section of Ẽ for a given directed
line ` in R3. Let t be the coordinate alone this line an x, y be orthogonal coordinates
in the plane perpendicular to `. In this case, define:

∂s = [Dx + iDy] s(dx− idy). (5.15)

Where Dx, Dy are shorthand for the x and y components of the covariant derivative
dA.

It is easy to show that this operator satisfies the Leibniz rule together with (∂)2 =
0, but we must show that it is well-defined as an operator from Γ(TCP1, Ẽ) →
Γ(TCP1,Ω(0,1)(Ẽ)). Namely, we must show that it fixes Ẽ, meaning that:(

d

dt
− iφ

)
(Dx + iDy) = 0. (5.16)

But this can be written as the requirement that the following commutator vanishes:

0 =

[
d

dt
− iφ,Dx + iDy

]
= F12 + iF13 −Dyφ+ iDxφ

⇒ F12 = Dyφ F31 = Dxφ.

(5.17)
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These are exactly the Bogomolny equations, as desired. We have thus shown that
Hitchin’s construction works.

5.2.3 The Spectral Curve

Given the above discussion, it is worth trying to understand what the solutions of this
scattering equation mean. We know from before that the null space of the scattering
operator consists of two linearly independent solutions, s0 and s1. Let us look at their
asymptotics. Again, let ` be a line parallel to the x1 axis with A1 = 0. Then

Proposition 5.2.10. As t → ∞, the two solutions to Hitchin’s scattering equation
are combinations of the following two solutions:

s0(t) = tk/2e−t e0, s1(t) = t−k/2et e1 (5.18)

where e0 and e1 are constant vectors in E in the asymptotic gauge.

Proof. Since A1 = 0, the scattering equation becomes

d

dt
− iφ = 0. (5.19)

Using asymptotics on φ from the prior section, we get

d

dt
− i
(

1− k

2t

)(
i 0
0 −i

)
+O(1/t2) = 0. (5.20)

This yields two differential equations:

d

dt
+

(
1− k

2t

)
+O(1/t2) = 0,

d

dt
−
(

1− k

2t

)
+O(1/t2) = 0, (5.21)

which in turn yield two solutions as t→∞:

s0(t)→ tk/2e−t e0, s1(t)→ t−k/2et e1. (5.22)

Note that (by t-reversal symmetry) we must have the same type of solutions as
t → −∞. Namely, there is a basis where one solution blows up as t → −∞ and the
other decays to zero. The solution that decays to zero, s′, must necessarily be some
linear combination of the t→∞ solutions s0 and s1. We thus have:

s′ = as0 + bs1. (5.23)

In the special case that b = 0, we get that s′ decays not only as t→ −∞ but also as
t→∞. Physically, this is called a bound state.
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Physical Concept 5.2.11 (Bound state). A bound state ψ(~x) is a state of a physical
system that decays “sufficiently quickly” (i.e. as e−|x|) as |x| → ∞). It captures the
notion of a localized particle.

Since the linear combination for s′ is a relationship between sections of a holo-
morphic line bundle, the ratio a/b is a well-defined meromorphic function on TCP1.
Fixing n̂, the poles of this function generically give k points on Tn̂CP1. Letting n̂
vary gives Hitchin’s spectral curve Γ on TCP1. Note this is a k-fold cover of CP1,
and an application of the Riemann-Hurwitz formula would yield that Γ in fact has
genus k − 1. We will illustrate more on why this curve deserves its name using the
Nahm transform in section 4.

Hitchin gives the following theorem, which we will state without proof:

Theorem 5.2.12 (Hitchin). If two monopole solutions (A, φ), (A′, φ′) have equivalent
spectral curves, then (A, φ) is a gauge transform of (A′, φ′).

Note that here there is no assumption on framing. The spectral curve itself does
not carry information about the phase of the monopole solution. On the other hand,
the section s′ associated to a given line for a monopole solution gives rise to a distin-
guished line bundle L over Γ, alongside the standard restriction of the vector bundle
Ẽ to Γ.

Note that Γ is holomorphic and real in the sense that it is preserved by the real
structure σ on TCP1.

The proof that a spectral curve satisfying the conditions imposed on Γ will give rise
to a monopole solution is done by going through the Nahm equations. As mentioned
before, Hitchin [39] showed using ideas from sheaf cohomology that a spectral curve
on TCP1 naturally gives rise to a set of Nahm data from which the Nahm equations
can be constructed. In this way, the construction of monopoles goes in the direction
of Figure 5.1.

5.2.4 The Rational Map

Let x1 = t and z = x2 + ix3. Let ` be a line parallel to the x1 axis. Note it is
determined by its intersection z with the x2, x3 plane. a and b are as before: the
linear combination of s′ = as0 + bs1, the solution decaying as t→ −∞.

It is a powerful result of Donaldson [41] that tells us: for a fixed direction x1 we
not only obtain a meromorphic function of the lines ` parallel to x1, namely S(z) =
a(z)/b(z), but that in fact any meromorphic function on CP1 with denominator degree
k has an interpretation as a k-monopole solution. This rational function depends on
the point of Mk specifying the monopole. In this sense it is almost gauge invariant,
except for the S1 phase associated to it. The poles of this rational function correspond
to when the solution has s′ = s0 from before, namely a bound state.

We state Donaldson’s result:

Theorem 5.2.13 (Donaldson). For any m ∈ Mk, the scattering function Sm is a
rational function of degree k with Sm(∞) = 0. Denote this space of rational functions
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by Rk. The identification of m → Sm gives a scattering map diffeomorphism Mk →
Rk.

Example 5.2.14. For k = 1 we have Rk takes functions of the form α
z−β , which turns

out to correspond to a monopole at (log 1/
√
|α|,Re(β), Im(β)). The argument of α

describes the U(1) phase at t→∞. This means M1 has complex structure C× C×.

Example 5.2.15. For higher k, in the generic case a rational function in Rk will split
as a sum of simple poles ∑

i

αi
z − βi

.

This has the interpretation of monopoles having centers at positions(
log

[
1√
|αi|

]
,Re (βi) , Im (βi)

)

and phases described by the arguments of the αi.

5.3 The Nahm Equations

5.3.1 Motivation

By adopting the monad construction of ADHM, Nahm succeeded in adapting their
formalism to solving the 3D Bogomolny equation. The idea of Nahm (and indeed,
the idea behind the Nahm transform more broadly) was to recognize monopoles on
R3 as solutions to the anti-self-duality equations in R4 that were invariant under
translation along one direction, and then appropriately modify ADHM to account for
the different decay conditions and symmetries of the configuration.

We present a review of the ADHM construction from the prior section. In what
follows, a quaternionic vector space of dimension k is taken to mean k copies
of C2, C2k, where each copy has quaternionic structure.

Review. The ADHM construction for su(2) starts with W a real vector space of
dimension k and V a quaternionic vector space of dimension k+1 with inner product
respecting the quaternionic structure. Then, for a given x ∈ R4 it forms the operator:

∆(x) : W → V. (5.24)

The operator ∆(x) is written as Cx+D where C,D are constant matrices and x ∈ H
is viewed a quaternionic variable once a correspondence is made R4 ∼= H.

If ∆ is of maximal rank, then the adjoint ∆∗(x) : V → W has a two-dimensional
complex (one-dimensional quaternionic kernel Ex that, as x varies, can be described
as a bundle over H ∼= R4. The orthogonal projection to Ex (viewed as a horizontal
subspace) in V defines the (Ehresman) connection on the vector bundle E → R4. [39]

Here, we will use the zero-indexed (x0, x1, x2, x3) to label the coordinates so that
the imaginary quaternionic structure of the latter three becomes more clear. Nahm’s
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approach [38] was to seek vector spaces W,V fulfilling the same function, and look
for the following conditions:

1. ∆(x)∗∆(x) is real and invertible (as before).

2. ker ∆(x)∗∆(x) has quaternionic dimension 1 (as before).

3. ∆(x+ x0) = U(x0)−1∆(x)U(x0).

This last point is equivalent to the translation invariance of the connection in x0, up
to gauge transformation.

Because of this new condition, unlike the case of ADHM, V and W turn out to
be infinite dimensional. Consequently, ∆,∆∗ become differential (Dirac) operators.

5.3.2 Construction

To construct V , first consider the space of all complex-valued L2 integrable functions
on the interval (0, 2). Denote this space by H0 (this notation coming from the fact
that this is the zeroth Sobolev space). This space has a real structure coming not
only from f(s) → f(s) but also from f(s) → f(2 − s). Define V = H0 ⊗ Ck ⊗ H,
where Ck is taken to have a real structure.

Similarly, we define W by considering the space of functions whose derivatives are
L2 integrable. This will be denoted by H1 (again with motivation deriving from a
corresponding Sobolev space concept). Define

W = {H1 ⊗ Ck : f(0) = f(1) = 0}.

Now define ∆ : W → V by

∆(x)f = i
df

ds
+ x0f +

3∑
i=1

(xiei + iTi(s)ei)f, (5.25)

where ei denote multiplication by the quaternions i, j, k respectively and Ti(s) are
k × k matrices. It is clear that this operator is the form Cx + D with C = 1 and
D = i d

ds
+ i
∑
Tjej.

Using the language of [39] we make the following proposition

Proposition 5.3.1. The following hold:

1. The requirement that ∆ is quaternionic implies Ti(s) = Ti(2− s)∗.

2. The requirement that ∆ is real implies Ti(s) are anti-hermitian and also that
[Ti, Tj] = εijk

dTk
dt

.

3. The requirement that ∆ is invariant under x0 translation is automatically sat-
isfied

4. The requirement that ∆∗ has kernel of quaternionic dimension 1 comes from
requiring that the residues of Ti at s = 0, 2 form a representation of SU(2)
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Proof. The first two are relatively straightforward to see. The new condition follows
immediately from

eix0(s−1)[∆(x)]e−ix0(s−1)f = eix0(s−1)

[
i
d

ds
+ . . .

]
(e−ix0(s−1)f)

= ∆(x)f + x0f

= ∆(x+ x0)f.

(5.26)

The last item states that since the residues of a k × k matrix valued functions are
themselves k × k matrices, that in fact the commutation relations of these residue
matrices at s = 0 and 2 form k-dimensional representations of SU(2). This requires
a bit of work, and can be found in [39].

We thus have the following data:

T1(s), T2(s), T3(s) k × k matrix-valued functions for s ∈ (0, 2) satisfying

dTi
ds

+ εijk[Tj, Tk] = 0. (5.27)

together with the requirements

1. Ti(s)
∗ = −Ti(s)

2. Ti(2− s) = −Ti(s)
3. Ti has simple poles at 0 and 2 and is otherwise analytic

4. At each pole, the residues T1, T2, T3 define an irreducible representation of su(2).

These are Nahm’s equations.
For a given solution of Nahm’s equations, the associated Dirac operator ∆∗(x),

depending on a chosen ~x, can be shown to again yield a 1-dimensional quaternionic
(2-dimensional complex) kernel Ex. Here, though, it does not specify a connection
on R4 but instead gives rise to A and φ through the following way construction:

Construction 5.3.2 (3D Monopole from Nahm’s Equations). Pick an orthonormal
basis of Ex = ker ∆∗(x) ∼= C2. Call this v1, v2. We view Ex as a fiber at x corre-
sponding to a C2 bundle, and construct φ and A by their actions on a given va at
x.

φ(~x)(va) = i
v1

||v1||L2

∫ 2

0

(v1, (1− s)va)ds+ i
v2

||v2||L2

∫ 2

0

(v2, (1− s)va)ds,

A(~x)(va) =
v1

||v1||L2

∫ 2

0

(v1, ∂iva)ds+
v2

||v2||L2

∫ 2

0

(v2, ∂iva)ds.

(5.28)

This defines them as operators on End(Ex) for each x, and in particular as a u(2)-
valued function and 1-form respectively.
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5.3.3 The Spectral Curve in Nahm’s Equations

For any complex number ζ we can make a definition:

A(ζ) = (T1 + iT2) + 2T3ζ − (T1 − iT2)ζ2,

A+ = iT3 − (iT1 + T2)ζ.
(5.29)

Nahm’s equations can then be recast as:

dA

ds
= [A+, A]. (5.30)

This is the Lax Form of Nahm’s equations. This can be solved by considering the
curve S in C2 with coordinates (η, ζ) defined by

det (η − A(ζ)) .

Proposition 5.3.3. The above equation is independent of s.

Proof. Let v be an eigenvector of A and let it evolve as dv
ds

= A+v. Then

d(Av)

ds
= [A+, A]v + AA+v = A+Av = λA+v, (5.31)

so this gives
d

ds
(A− λv) = 0. (5.32)

Since A − λv = 0 at s = 0, it is always zero. Thus, this curve of eigenvalues is
independent of s.

It is in fact a remarkable result that:

Proposition 5.3.4. The curve S constructed above is the same as the spectral curve
Γ constructed previously.

Hitchin showed this by associating to a given spectral curve Γ a set of Nahm data
in [39].

5.4 The Nahm Transform and Periodic Monopoles

The Nahm transform is a nonlinear generalization of the Fourier transform, related
to the Fourier-Mukai transform. It allows for the construction of instantons on R4/Λ.
Some examples are below:

1. Λ = 0: ADHM Construction of Instantons on R4,

2. Λ = R: The monopole construction that this paper has described,

3. Λ = R× Z: Periodic monopoles on R3 (calorons, c.f. [45]),

4. Λ = (R× Z)2: Hitchin system on a torus.
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Chapter 6

S-Duality and Line Defects in the
Twisted 4D Theory

The aim of this chapter is to first develop for the reader a picture of N = 4 Super-
symmetric Yang-Mills (SYM) theory together with its topological twists. With this,
we bring together the ideas of the previous chapters and study the actions of line
defects on the categories of boundary conditions of two topological twists of N = 4
SYM.

Since geometric Langlands associates to each complex curve an equivalence of cat-
egories, and since TQFT associates a category to each codimension two submanifold,
following a blurb of Witten in [46], the reason that the Langlands correspondence is
realized by a duality of a gauge theory in four dimensions is that 2+2 = 4. Moreover,
a quick mathematical calculation gives that 4 − 1 = 3. Taking one dimension to be
“time”, we will see that the line operators of the 4D theory can be viewed as acting
like point insertions of singularities along a given 3-manifold W . This is where the
Bogomolny equations of the prior chapter shall enter into the picture, and we will
make a connection of the solution of the Bogomolny equations to the space of Hecke
modifications.

6.1 Setting the Stage

6.1.1 Reduction from Ten Dimensions

One of the simplest ways to arrive at 4D N = 4 SYM is to begin with supersymmetric
gauge theory on R10 with gauge group G [9]. Throughout this chapter, we will be
working in Euclidean signature. Recalling from Section 2.4.1, Spin(10) is known to
have two inequivalent spin representations S+ and S−, our supersymmetry will be of
the formN = (1, 1). In the 10D theory, we have two fields, A and λ. A is a connection
on a principal G-bundle P while λ transforms as a positive chirality spinor with values
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in the adjoint representation1, namely we consider sections λ ∈ Γ(M,S+⊗adP ). We
have F = dAA.

“Bosonic” will be taken to mean terms consisting of only the connection A10D and
its derivatives. “Fermionic” will be taken to mean terms involving a the spinor λ.
This is standard convention in any textbook on quantum field theory, see for example
[47]. This theory has 16 supercharges Qa transforming in the S− representation.

The action here is:

S =
1

e2

∫
Tr
(
F10D ∧ ?F10D − iλΓdAλ

)
. (6.1)

where Γ is the chirality operator discussed in Section 2.4.2.
The reduction to 4 dimensions is done in a similar manner to how we proceeded in

Chapter 5. Namely, we assume all fields are independent of the last six direction. This
gives us a new connection which we will again denote by A = Aµd

µ in 4D together
with six scalar fields φi. The curvature F decomposes into three terms. The first is
the curvature in 4D, which we will again denote by F , the second consists of covariant
derivatives of the φi, dAφi, and the last consists of commutators [φi, φj]. All together,
the bosonic part of the action can be written as:

1

e2

∫
M

Tr

(
F ∧ ?F +

∑
i

dAφ ∧ ?(dAφ) +
∑
i<j

[φi, φj]
2VolM

)
(6.2)

The fermionic part can be similarly decomposed into four spinors λa transforming in
ad (E)⊗S+ and four spinors λa transforming in ad (E)⊗S−. In Minkowski signature
λ and λ are conjugates but in Euclidean signature they are independent [48].

The reduced 4D theory gains an Spin(6) symmetry acting on the fields which is
in fact the R symmetry group from Section 2.4. The scalar fields φi transform in the
vector representation of this group, while the λ and λ transform as spinors and dual
spinors of this group as well.

On M = R4 the 16 supersymmetries will transform as N = 4 copies of the

4-dimensional spin representation of Spin(4). We will have Q
A

α and QA
α̇ for A ∈

{1, 2, 3, 4} and α, α̇ ∈ {1, 2} transforming as spinors and dual spinors in Spin(6) and
also as spinors and dual spinors for the spacetime structure group Spin(4).

Physical Concept 6.1.1. N = 4 Super-Yang Mills theory is the unique field theory
of maximal supersymmetry in four dimensions.

Further, this theory is scale invariant. By the usual arguments [47], it is easy
to see that the mass dimension of the coupling constant e must be 0, though it
is much harder to see that renormalization will not contribute a mass scale. Scale
invariance, together with the Poincaré symmetry of R4 combine in this case to form a
conformally invariant theory known as a conformal field theory. For an exposition
on conformal field theory in dimensions greater than two, see [49]. This conformal

1There will also be a negative chirality spinor λ, but it will not play an important role in what
is to come.
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invariance will be crucial for the necessary duality to make sense, as otherwise the
nontrivial renormalization flow would violate the Montonen-Olive duality between
electric and magnetic charge, to be introduced in the next subsection and summarized
in depth in section three of [48].

There is also a parameter iθ
8π

∫
M

Tr (F ∧F ) that can be added to the action where
θ is called the instanton angle. By the usual Chern-Weil theory arguments (see
Section 4.1.2), this depends only on the topology of the principal G-bundle of the
gauge theory.

Observation 6.1.2. The theory is invariant under θ → θ + 2π.

Proof. Since 1
8π

∫
M

Tr (F ∧ F ) is an integer, the path integral is

Z =
∑
P

principal bundles

∫
D{Fields} e−SE [Φ].

For θ → θ + 1 we get an additional factor of

ei
∫
M Tr (F∧F )

to the action. Since the instanton number is an integer by the same arguments as in
Chapter 4, this will have no effect on any of the observables of the theory.

In general e2 and θ are two parameters determining the coupling properties of
the theory, and are more generally bundled together into a single coupling constant
τ = θ/2π + 4πi/e2. We have just seen that τ → τ + 1 is a symmetry of the theory.
Next, we will discuss a far less trivial symmetry.

6.1.2 Montonen–Olive Duality

For this entire chapter, we will take G is a simple Lie group. The lacing number
ng of G is defined to be 3 for the group G2, 2 for the series Bn, Cn and group F4, and
1 otherwise.

In physics, a duality between a theory with coupling constant e and coupling
constant 1/e is called a strong-weak duality, more generally known as S -duality.
What is special about N = 4 super Yang-Mills theory is that it is conjectured to
exhibit a strong-weak duality in the coupling constant τ .

Concept 6.1.3 (Montonen–Olive Duality). In 4D N = 4 supersymmetric Yang-
Mills theory with gauge group G and complex coupling constant τ , any correlator of
observables

〈O1 . . .On〉τ,G :=

∫
D{Fields}O1 . . .On e−S

can be rewritten in terms of Yang-Mills theory with inverse coupling constant −1/ngτ
on the Langlands dual group Ǧ as a correlator of dual operators Õ1 . . . Õn

〈O1 . . .On〉τ,G =
〈
Õ1 . . . Õn

〉
−1/ngτ,Ǧ

.
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Thus, in a given theory with coupling constant τ = θ/2π + 4πi/e2, we have two
symmetries τ → τ + 1 and τ → −1/τ (in the simply laced case), which we know
generate the larger set of transformations:

τ → aτ + b

cτ + d
.

This is SL(2,Z).
This duality was first noted by Goddard, Montonen, Olive, and Nuyts in [50, 51],

as an observation between the duality of magnetic charge . It does not seem to be able
to be made compatible , but there is strong evidence that N = 4 super Yang-Mills
theory exhibits this duality. From here forward, we will assume the existence of this
duality (often abbreviated as GNO or MO duality), and derive constructions related
to the Langlands conjecture, in particular the geometric Satake equivalence.

We are in a place where we should at least give a rough characterization of the
Langlands dual group. Rather than giving the explicit definition, we simply charac-
terize the property that will be useful to us.

Fact 6.1.4 (Langlands Dual Group). Let G be a reductive group. The coweight lattice
of G is the same as the weight lattice of its Langlands dual Ǧ. Consequently, for G a
real compact group, let T be a maximal torus in G. There is a corresponding maximal
torus T∨ in Ǧ so that

Hom(U(1), T ) ∼= Hom(T∨, U(1)).

This fact will be sufficient to guide us in the constructions relevant to the rest of
this chapter.

6.1.3 Topological Twisting

In this subsection we aim to give the reader a basic understanding of the process of
topological twisting, and how this changes a field theory. The following concept will
be important to us, though we do not attempt to give it a rigorous definition.

Physical Concept 6.1.5 (Sector). Given an operator Q transforming under Lorentz
transformations as a scalar2 such that Q2 = 1

2
[Q,Q] = 0, we define the sector of our

theory E by the set of Q invariants, and denote this as (E , [Q,−]).
Slightly more precisely, [Q,−] defines a differential operator, and the “observables”

become exactly those gauge-invariant quantities annihilated by Q modulo those that
are Q-exact.

Obtaining such an operator Q transforming as a scalar from our current set of
supersymmetry generators is impossible, as they all transform in the spinor represen-
tation of our spacetime structure group Spin(4). In order to get around this problem,
we introduce the following idea.

2More technically in “cohomological degree 1”.

72



Physical Concept 6.1.6 (Topological Twist). Given a supersymmetric (SUSY) field
theory E , a topological twist is a procedure for extracting a sector of E that depends
only on the topology of the spacetime manifold. The resulting field theory is topo-
logical in the definition of Section 2.3

In general this involves a homomorphism from the universal cover of the structure
group of the spacetime tangent space TM to the R-symmetry group. For our four-
dimensional N = 4 case this is

ρ : Spin(4)→ Spin(6).

This redefines how the fields transform under the cover of the Lorentz group, Spin(4).
The twist that will give us the geometric Langlands duality comes from considering

first the following equivalence-class of obvious embeddings.

Spin(4)/Z2 = SO(4) ↪→ SO(6) = Spin(6)/Z2

given by: 
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

This embedding will then have a Z2 lift giving our desired ρ.
Another way to get this embedding is to note that by the accidental isomorphisms,

Spin(6) ∼= SU(4) and Spin(4) ∼= SU(2)L×SU(2)R, which embeds block-diagonally into
SU(4) as (

SU(2)L 0
0 SU(2)R

)
.

After twisting by ρ, the group Spin(4) acts differently on the supersymmetry
generators. In particular, of the 16 generators, one of the left-handed and one of the
right-handed supersymmetries become scalars under the new action of Spin(4). We
thus get scalars Ql, Qr, and any (complex) linear combination of these gives rise to
a different “sector” of invariants3. Clearly overall scaling does not matter in defining
the invariant fields, so we have P1(C) of subsectors to chose from.

Upon a choice of Q = uQl + vQr, after some manipulation, one can rewrite the
N = 4 Yang-Mills action as:

S = {Q, V }+
iθ

8π2

∫
M

Tr (F ∧ F )− 1

e2

v2 − u2

v2 + u2

∫
M

Tr (F ∧ F ). (6.3)

3For a more detailed overview of what is meant by this language, the reader is invited to consult
a textbook on quantum field theory discussing the BRST quantization scheme. The notes of [52]
and Weinberg’s second volume on quantum field theory [53] are good resources for this
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Here V is some relatively complicated gauge invariant function of the fields that will
not matter for the observables in the BRST-quantized theory, since it contributes a
Q-exact term. Note that though there is metric dependence in V , the remaining terms
involve only

∫
M

Tr (F ∧F ), which we know to be metric independent, depending only
on the topology of the principal bundle.

Fact 6.1.7. Any such sector obtained by a choice of Q defines a theory that is in-
dependent of the Riemannian metric (i.e. diffeomorphism invariant). Further, this
topological theory can be defined on a general curved four-manifold M .

In general, we can bundle θ
2π

+ v2−u2
v2+u2

4πi
e2

into a single parameter Ψ known as the
“canonical parameter” by Kapustin and Witten [9] and write:

S = {Q, V }+
iΨ

4π

∫
M

Tr (F ∧ F ).

We see that N = 4 super Yang-Mills theory has a CP1 family of topological twists.
Moreover, Montonen-Olive duality acting on the N = 4 theory induces a class of
SL(2,Z) equivalences on families of topological twists. This comes from the following
observation.

Observation 6.1.8. Ψ transforms in the same way as τ does. Namely, τ → τ + 1
induces Ψ→ Ψ + 1.

Proof. This is immediate after writing

Ψ =
τ + τ

2
+
τ − τ

2

v2 − u2

v2 + u2

and working through the algebra of both transformations.

Two of these twists will be relevant here, known as the Â-model and the B̂-model4.

Note. Though the original N = 4 super Yang-Mills theory was defined on R4 by
reduction from R10, the topologically twisted theory makes sense on an arbitrary
curved oriented manifold M .

6.1.4 Equations of Motion in the Topologically Twisted The-
ory

It is worth understanding how the fields in the topologically twisted theory transform,
and what constraint this puts on their configuration space and equations of motion.

Firstly, A transforms trivially under the R-symmetry Spin(6), so the twist will not
change how it transforms. The six scalar fields will now have Spin(4) act nontrivially
on them. Since the φi transform as a vector representation of Spin(6), which is just the
defining representation of SO(6), ρ : Spin(4)→ Spin(6) will induce an SO(4)→ SO(6)

4This notation comes from the fact that, upon compactification down to two dimensions, these
models become the A and B topological sigma models discussed before
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action of the spacetime group on the fields. That means that the φi combine into
two distinct fields. One of them (transforming under SO(4)) is a 1-form valued in
adP , which will be denoted φ ∈ Ω1(M, adP ) and the other two are SO(4) scalars
that can be combined to form a complex scalar field valued in the complexification
of the adjoint bundle denoted σ, σ ∈ Γ(M, adP ) ⊗ C. These two scalars have an
SO(2) internal symmetry. The fermions combine into one 2-form, two 1-forms, and
two scalars, but this will not be as important in the story we aim to explain.

For Q = uQl+vQr, define t = v/u. The equations given my requiring that the su-
persymmetric variation of the fermion fields vanishes become (generically) equivalent
to the following:

(F − φ ∧ φ+ tDφ)+ = 0

(F − φ ∧ φ− t−1Dφ)− = 0

D ? φ = 0

σ = 0

(6.4)

where (·)+ and (·)− as in Chapter 4 denote the self-dual and anti-self-dual parts of a
given 2-form.

Our situations of interest are at t = 1 and t = i. Note that at t = i, Ψ =∞ and
the θ parameter does not enter into the theory. On the other hand, for t = 1, we get
Ψ = θ/2π. Thus, we can map a theory with t = 1, θ = 0 to a theory with t = i, θ = 0
by Ψ→ −1/Ψ, replacing G with Ǧ as we do this.

For t = 1 we get
(F − φ ∧ φ+Dφ)+ = 0

(F − φ ∧ φ−Dφ)− = 0

D ? φ = 0.

(6.5)

The first two equations imply that

?F − ?φ ∧ φ+ ?Dφ = −F + φ ∧ φ−Dφ

?F − ?φ ∧ φ− ?Dφ = F − φ ∧ φ−Dφ

which in turn implies that our equations of motion can just be written as:

F − φ ∧ φ+ ?Dφ = 0, D ? φ = 0. (6.6)

It is from these equations that, after appropriate restriction to a 3-manifold, we will
obtain the Bogomolny equations for monopoles.

On the other hand, at t = i we get

F − φ ∧ φ+ iDφ = 0

D ? φ = 0.
(6.7)
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Upon redefining the connection5 to a complex connection A := A + iφ we see that
this first condition is a flatness condition on a new curvature tensor F := dAA = 0. If
we allow for the complexified gauge group GC to act on this field theory, the equation
D?φ = 0 can be ignored and the space of solutions can be equivalently identified with
the solutions to F = 0 modulo complex gauge. Following the notation of [48], this
space of field configurations will be calledMflat(G,M). It is here that the connection
to the Langlands program is most immediate.

A flat connection on a vector bundle E → M is the same as a local system in
algebraic geometry, which in turn is equivalent to a representation of the fundamental
group π1(M) → G. This space will thus capture the geometric object FlatǦ on the
Galois side. Here M is a four-manifold, while in the Langlands correspondence our
object of study was a . The solution is to take M = C×Σ for a closed complex curve
C and 2-manifold Σ (generally with boundary) and perform a dimensional reduction
from this topologically twisted theory to a nonlinear sigma model on Σ valued in
Mflat(G,C). Our aim is to explore the role of Wilson lines on this space, so for a
more in-depth exposition see the standard references [9, 48]. We will revisit this idea,
however, in later sections.

6.2 Introduction to Wilson and ‘t Hooft Lines

In general, the connection 1-form A gives a way to transport data along a vector
bundle E associated to a representation R of G. This allows us to compare the values
of fields operators at different points by integrating along E using our connection.
This classical operator is called a Wilson line. Wilson lines transform (under a
general transformation g ∈ G), as:

WR(γ) = g(γ(1))WR(γ)g(γ(0))−1 (6.8)

in the special case of γ closed, we see this is gauge-invariant. In this case, it called
a Wilson loop. It can be viewed as yielding an element of the group G in the
representation R. In this case, the trace of this element gives an invariant scalar
quantity (known in physics as a c-number), and hence for γ closed we further add a
trace.

Definition 6.2.1 (Wilson Loop). Given a field theory with gauge group G and a
finite-dimensional representation R of G together with a closed loop γ, we define the
Wilson loop operator:

WR(γ) := Tr R(Hol(A, γ)). (6.9)

It is worth making a note that in general, BRST quantization on the topologically
twisted theory will prohibit the existence of Wilson loops as valid operators of study
in the sector associated with Q. It is only in the special case of t = ±i that the
modified connection A = A± iφ will become a BRST invariant.

5More than just simplifying the expression, it turns out that at t = i the connection A is not a
BRST invariant, but A is.

76



In our picture, let M be a 4-manifold and let L ⊂ M be an oriented 1-manifold
embedded in M . On the B̂-twist, we can consider taking the holonomy of the new
connection A along L, when L is closed, giving us a Wilson loop.

Moreover, if M has boundary, we can let L be an open 1-manifold connecting two
boundary components of M . Since this theory is a TQFT, a boundary component
E of M will have an associated space of states HE. Under the action of the gauge
group, we expect HE to split into a direct sum of irreducible representations of G.
Inserting a Wilson operator WR going from boundary component E1 to E2 will act
on the spaces HE1 ,HE2 as an endomorphism sending vectors in HE1 transforming in
representation R to vectors in HE2 transforming in the same representation. It does
this by parallel transporting data on E1 to E2. Put simply: Wilson lines with their
endpoints lying in ∂M will act as linear transformations between initial and final
states of the theory.

In this topological field theory, the algebra of Wilson lines is particularly simple [9].
Consider two Wilson lines associated to curve γ, γ′ ⊂M . Because of supersymmetry,
the limit limγ→γ′WR(γ)WR′(γ

′) can be evaluated classically. That is, there are no
divergences encountered in the N = 4 theory when two Wilson lines approach each
other, and no other quantum effects that become relevant in taking an operator-
product expansion. Consequently, we can just set γ = γ′ and evaluate this product
classically.

In the case of γ, γ′ closed loops, W (R) and W (R′) are holonomies in the represen-
tations R,R′ so their product is a holonomy in R ⊗ R′. If γ, γ′ are not closed loops,
then W (R),W (R′) perform operations of parallel transport from initial to final states
on ∂M in the representations R and R′. In the quantum mechanical perspective, they
can equivalently be viewed as performing parallel transport on the tensor product of
states.

We thus have the result:

lim
γ→γ′

WR(γ)WR′(γ
′) =

∑
Rα⊂R⊗R′

irrep.

nαWRα(L′). (6.10)

Here, nα is the multiplicity of the irreducible representation Rα in R⊗R′.
From the above discussion, we should ask

Question. What is the dual operator to a Wilson line?

From the physics viewpoint, in studying the phenomenon of quark confinement, ‘t
Hooft showed in 1978 that MO duality will exchange a Wilson line (a type of “order
operator”) on one side with something known as a ‘t Hooft line (a type of “disorder
operator”) on the other side [54]. This physical idea of a disorder operator arises in
a broad range of contexts, not at all limited just to gauge theory on R4. It is seen in
statistical physics, many body theory, and even quantum spin chains.

We can intuitively understand the insertions of ‘t Hooft lines in the path integral
as imposing divergence conditions on the curvature form F so that in local coordinates
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x1 . . . x3 perpendicular to the line we have

F (~x) ∼ ?3d
( µ

2r

)
(6.11)

where µ is an element of the lie algebra g and r = |~x|. In fact the supersymmetric
conditions of Equations in (6.5) imply that φ must encounter an analogous divergence:

φ =
µ

2r
dx4. (6.12)

It turns out that for us to be able to find a gauge field A whose curvature F
satisfies this condition, we must have that µ is a Lie algebra homomorphism R → g
obtained by applying the Lie algebra functor “Lie” on a Lie group homomorphism
U(1)→ G to give a homomorphism µ : u(1)→ g. This reasoning is obtained by first
arguing that in the U(1) case ‘t Hooft operators are Dirac monopoles on R3, and are
classified by an integer n corresponding to the first Chern class. Consequently any
‘t Hooft operator in a non-abelian gauge theory must arise from a homomorphism
U(1)→ G. For the full argument, see section 6.2 of [9].

Another way to say this is (after using gauge freedom to conjugate µ to a particular
Cartan subalgebra) that µ must lie in the coweight lattice Λcw. Note though (as noted
in [51]), that if we perform a gauge transformation by

exp(iπ(Eα + E−α)/
√

2α2)

this will send
µ→ µ− 2α

α · µ
〈α, α〉

which corresponds to a Weyl group action on µ. This turn out to be the only degen-
eracy, so we have that ‘t Hooft operators are classified by the space:

Λcw(G)/W .

This is also the same as
Λw(Ǧ)/W .

Here, we can recognize this as indexing the representations of the Langlands dual
group.

Observation 6.2.2. By MO duality, the class of a given ‘t Hooft operator in this
theory with gauge group G must be classified by the irreducible representations of Ǧ.

The operator product expansion of Wilson lines captures the monoidal category
structure of Rep(Ǧ). By duality, this category must also be capturing the OPE of
‘t Hooft lines. Can we say anything about the OPE of ‘t Hooft lines in terms of G,
without reference to the dual theory?

It turns out, that the answer is “yes”, and this will give a physical interpreta-
tion of the geometric Satake equivalence that acts as symmetries of the Langlands
correspondence.
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6.3 The Action of ‘t Hooft Lines

6.3.1 The Hamiltonian Picture in 3D

The M relevant to geometric Langlands is of the form Σ × C where C is a closed
complex curve and Σ is a 2-manifold with boundary. To make contact with the cate-
gories D(BunG) and QC(FlatǦ), the theory is reduced to a two-dimensional nonlinear
sigma model on Σ. From here, we can understand the MO duality acting as mirror
symmetry on the Â and B̂ models, giving exactly the A and B models known to
those who study mirror symmetry. Physicists see this in terms of a phenomenon
known as T -duality [55].

We will not be interested in studying these categories of boundary conditions here.
Instead, we aim to understand the line defects of the 4D theory in terms of the Satake
symmetries that act on both sides of the Langlands correspondence. On Σ, we take
one direction to be “time” so that we can take the Hamiltonian point of view and
study the field theory as quantum mechanics of states living on a 3-manifold W . We
take W = I ×C. Our choice of I here is so that M = R×W can have two nontrivial
boundaries, as it will turn out that the study of boundary conditions will be crucial
to making a connection with the statement of geometric Langlands.

The boundary conditions on I matter here, and it turns out that in the Â model
we should consider Dirichlet boundary conditions on one end and Neumann boundary
conditions on the other. In the language of gauge theory, Dirichlet boundary condi-
tions demand the bundle to be trivial on that boundary, while Neumann boundary
conditions allow for it to be arbitrary6.

Now ‘t Hooft lines look like points on the 3-manifold W = I ×C. As in Equation
6.12, we can locally take φ = φ4dx

4 so that on W , φ behaves as a scalar. This is
the same logic as the analysis we had in Section 5.1.2. Then, on W , Equation (6.5)
reduces exactly to the Bogomolny equations for monopoles:

F = ?3DAφ.

Let’s write a local coordinate z ∈ C parameterizing C and σ ∈ R parameterizing I.
We can gauge away Aσ = 0 exactly as we did in Section 5.2.1 when studying the
scattering transform for monopoles. These equations reduce to the following:

∂σAz = −iDzφ.

This condition can be interpreted as stating that the isomorphism class of the holo-
morphic G-bundle corresponding to the connection Az is independent of y. This is
because the right hand side corresponds to changing A by a gauge transformation gen-
erated by −iφ. Thus, performing the infinitesimal gauge transformation A→ A+ iφ
gives us the new holomorphic connection our G-bundle, putting it in the same holo-
morphic class as we had with connection A.

6More technically, they impose certain restrictions on the normal derivative of our bundle, but
the supersymmetry constraints of the theory enforce this anyway.

79



T (R1⋁ ,p1)

T (R3⋁ ,p3)

T (R2⋁ ,p2)

C

Figure 6.1: The insertion of three ‘t Hooft line operators into the 4D theory, cor-
responding to three point defects on the 3-manifold W . At each such insertion
pi = (si, zi), there will be a corresponding Hecke modification of a G-bundle over
C at the point zi. Here the dashed lines denote the values si ∈ I that the bundle
undergoes a modification.

The only place where this is violated is at the values of σ where the Bogomolny
equations become singular. This is where we have the insertion of a monopole, corre-
sponding to a ‘t Hooft modification of the bundle. This is exactly along the lines of
the argument in Section 5.1.2, where the insertion of a monopole at a radius r away
from the origin on R3 modifies the holomorphic class of the bundle over S2

R as we go
from R < r to R > r.

More generally, it is worth noting that this entire construction follows very closely
the inverse scattering approach of Hitchin [36, 42]. In that case, the curve C corre-
sponded to the (non-compact) Riemann surface C parameterizing the x1 − x2 plane,
and lines along the x3 direction take the place of our s variable along the unit interval
I.

6.3.2 The Affine Grassmannian

In this section we make a mathematical detour to study the idea of Hecke modifi-
cations, which characterize the action of the ‘t Hooft operators on the holomorphic
bundles over C in our theory.

Definition 6.3.1 (Hecke Modification). Let G be connected semisimple 7. Given a
G-bundle E over a Riemann surface C, a Hecke modification of E at a point p ∈ C
is a G-bundle Ẽ → C together with an isomorphism Ẽ ∼= E on C\{p}.

Observation 6.3.2. The Langlands dual is defined to have the property that any
highest weight representation ρ̂ : Ĝ → U(1) is dual to a morphism ρ : U(1) → G
which can be viewed as a clutching function for a G bundle on the Riemann sphere

7Note that we will require G to be both connected and semisimple, as otherwise the following
logic would not work, even for G = U(1).
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CP1. Complexifying this gives ρ : C× → GC. Note C× ∼= CP1\{p, q}. This gives us
a gluing of a trivial bundle over CP1\{p} to a trivial bundle over CP1\{q}. This is
exactly what we call a Hecke modification of type ρ of the trivial bundle on CP1. It
is in fact true (though we will not show this here) that every holomorphic GC-bundle
over CP1 arises in this way.

For our case, over CP1, Hecke modifications of the trivial bundle correspond ex-
actly to a clutching function ρ : C× → GC coming from a representation of the
Langlands dual group. Following the convention of [19], we write N (ρ) to denote the
space of such Hecke modifications of type ρ over CP1.

We now give some motivation for the next concept we will consider, namely the
affine Grassmannian. The idea for this motivation was first introduced to the
author in [2].

Motivation. Consider a Hecke modification over a Riemann surface C. Since C
is a genus g surface for some g, removing a point gives us a the punctured 2g-gon,
homotopically equivalent to a wedge of 2g circles.

Using the language of classifying spaces, the space of G bundles over C\{p} is
the homotopy classes of maps

∨2g
i=1 S

1 → BG, which is captured by simply looking
at S1 → BG, namely π1(BG). On the other hand, this is the same as π0(G), which
is trivial for G connected. Thus, we can find a trivialization on C\{p}. Similarly,
around p we have a disk D on which we can also find a trivialization.

A gauge choice on a trivial bundle over a space M is just a map M → G. In our
case we have three spaces: the disk D, the punctured surface which we will denote
C×, and the punctured disk D×.

Then we have following three spaces of functions:

• Lin = Map(D→ G), the gauge choices on D×

• Lclutch = Map(D× → G), the clutching function

• Lout = Map(C× → G), the gauge choices on C×.

Then a G-bundle on C is specified by a clutching function modulo gauge trans-
formations on both sides. Heuristically, then, in this picture we have

BunG(C) = Lout\Lclutch/Lin.

Letting z be a local coordinate C at p, the space of local gauge transformations
in a formal neighborhood of z can be viewed as formal power series in z with values
in the gauge group G. This is G[[z]]. For a linear algebraic group inside GLn, this
can be viewed as n× n matrices with entries that are formal power series

M =

P11(z) . . . P1n(z)
...

. . .
...

Pn1(z) . . . Pnn(z)


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with the power series Pij(z) ∈ C[[z]] constrained so that M ∈ G. This captures
the gauge transformations on D. For the punctured disk, on the other hand, we are
allowed to perform more general formal Laurent series, and thus for us the corre-
sponding ring (defined analogously) will be G((z)).

Given a trivialization on C×, the space of possible Hecke modifications at p is
exactly the space of clutching functions modulo gauge:

Lclutch/Lin = G((z))/G[[z]].

This is the motivation for our next definition.

Definition 6.3.3 (Affine Grassmannian). The affine GrassmannianGrG of a semisim-
ple group G is the quotient space:

GrG := G((z))/G[[z]].

We state the following fact. For a more thorough intro, the reader is invited to see
the notes of [56].

Fact 6.3.4. The Affine Grassmannian has a stratification into disjoint cells:

GrG =
⊔

ρ∈X+(T )

N (ρ) (6.13)

where X+ are the dominant integral coweights of G given maximal torus T . These
correspond to the dominant integral weights of Ĝ. These are in canonical bijection
with Rep(Ǧ).

The affine Grassmannian plays an important role in the geometric Langlands
correspondence. In particular, there is the Satake equivalence, which states:

Theorem 6.3.5 (Satake). The ring of compactly supported G[[z]]-invariant8 func-
tions on GrG is equivalent to the representation ring of Rep(Ǧ).

In its original context [57] this relates the spherical Hecke algebras from Chapter 1
to the representation ring of Ǧ. There is also a geometric version of the Satake
equivalence formulated in terms of sheaf-theoretic language.

Theorem 6.3.6 (Geometric Satake). The category of G[[z]]-equivariant perverse
sheaves on GrG, PG[[z]](GrG) is equivalent as a symmetric monoidal category9 to the
representation ring of Rep(Ǧ).

A discussion of the category of perverse sheaves on a space is beyond the scope of
this thesis. Still, perverse sheaves will have connections to the cohomology theory we
use to construct the Hilbert space of states on W with ‘t Hooft singularities inserted.

8Here G[[z]] acts by left multiplication.
9More technically,
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6.3.3 The Space of Hecke Modifications in the Physical The-
ory

We now conclude this thesis by connecting the ‘t Hooft operator picture to the picture
of the affine Grassmannian. We consider a trivial bundle on C and study how Hecke
modifications act on it. In our picture of W = I×C, we begin with Dirichlet boundary
conditions at one end of I and end with Neumann boundary conditions on the other
end. We allow for ‘t Hooft operators to be inserted on W . In particular we denote
a ‘t Hooft operator by two sets of data: the point pi where it is inserted and the
representation Ři of Ǧ that corresponds to its type. The solutions to the Bogomolny
equations of motion on W are then exactly the space of Hecke modifications with
these prescribed singularities.

We denote this space by Z(Ř1, p1, . . . , Řk, pk). This space is generically singular
(10.3 of [9]). In order to be able to understand this space of solutions more clearly,
we make use of the TQFT picture. The insertion of a ‘t Hooft operator of type Ř
at a point p is equivalent to carving out a 2-sphere around p, CP1

p, and demanding

that the vector bundle E restricted to CP1
p is obtained from a clutching function

corresponding to Ř (see Observation 6.3.2).

T (R⋁ ,p)

C- C+

Figure 6.2: An illustration of how the insertion of a ‘t Hooft operator of type Ř
equivalently gives rise to a cobordism C− t CP1 → C+ with boundary conditions on
S2 arising from the G-bundle on CP1 induced by Ř.

The classification of Hecke operators is thus very closely connected to the classifi-
cation of G-bundles over CP1. Working in the picture of Figure 6.2, by viewing the in-
sertion of a ‘t Hooft operator as a cobordism C−tCP1 we see that Z(Ř1, p1, . . . , Řk, pk)
should have no explicit dependence on any of the points pi. We will hence denote it
just by Z(Ř1, . . . , Řk).

Though we will not prove this here10, the space Z(Ř1, . . . , Řk) factorizes. From
the perspective of TQFT, this should be believable. If the insertion of a ‘t Hooft
operator can be viewed as modifying the cobordism from C− → C+ with prescribed

10See sections 9 and 10 of [9] for a more detailed study of the space of solutions.
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boundary conditions into a cobordism from C− t CP1 → C+, then the insertion of
multiple ‘t Hooft operators gives

C− t CP1
1 t · · · t CP1

k → C+.

By the locality axiom of TQFT, the category of boundary conditions associated to the
disjoint union of CP1

i should be some form of product of the categories associated to
each individual CP1

i . The information about this category is contained in the solution
space to the Bogomolny equations on W so naively we would expect

Z(Ř1, . . . , Řk) =
∏
i

Z(Ři).

This turns out to hold true.
Now note Z(Ř) can be identified with the space of Hecke modifications of type

Ř. If ρ is the associated map ρ : U(1) → G, then we can identify Z(Ř) with the
Schubert cell N (ρ).

Both of these spaces are not compact, but have natural compactifications

Z(Ř),N (ρ). N (ρ) will include Schubert cells associated to different representations
of Ǧ. These will be exactly the representations with weights “smaller” than ρ [19].
Physically this compactification has an interpretation in terms of the phenomenon of
instanton/monopole bubbling and can be thought of in terms of collisions of the
points pi, c.f. section 10.2 of [9].

As we noted before, in a TQFT we should associate to each codimension 1 manifold
a vector space of states. This means that (in the 4D theory) the space W modified
by the prescribed singularities {(pi, Ři)} has an associated vector space in the twisted
N = 4 theory. How can we obtain such a space of states from Z(Ř1, . . . , Řk). The
natural operation [19] is to take the cohomology of this space. To be more specific,
because Z is singular generically, the cohomology theory here will in fact correspond
to the L2 or intersection cohomology. From the side of mathematics, this has
connections to perverse sheaves on the space as in Theorem 6.3.6, but we will not
discuss that here. Our Hilbert space is defined as:

H(Ř1, . . . Řk) := H•(Z(Ř1, . . . , Řk)).

By using the fact that the product of cohomologies is the cohomology of the prod-
uct we obtain the desired symmetric monoidal structure mirroring that of Rep(Ǧ):

H(Ř1, . . . Řk) =
k⊗
i=1

H(Ři). (6.14)

Just as Ři combine together to form tensors of irreducible representations, we see
that the Hilbert spacesH(Ři) can be tensored together in the same way, corresponding
to combining the classes of ‘t Hooft operators into a joint set of singularities on W .
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Thus, from the side of physics, we see an equivalence

H•
(
N (ρ)

)
↔ Rρ. (6.15)

We have a relation between the representation defined by the homomorphism ρ and
the cohomology of the Schubert cell of the associated space of Hecke modifications on
CP1. This gives a correspondence between relevant objects in the geometric Satake
equivalence.

Given more time, I would have liked to extend this thesis to understand the action
of ‘t Hooft operators on the categories of 2D boundary conditions in the twisted 4D
theory.
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