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Abstract. An introduction to graded Lie Algebras is given, with particular
focus on the Z2-graded superalgebras. The Kac classification of graded Lie
algebras is presented and their tensor representations are examined. The
remainder of the paper is then devoted to their applications for studying
dynamic symmetries of atomic nucliei.

1 Introduction

Ever since its introduction in the early 1970s, the concept of supersymmetry
has spurred an immense amount of research both in pure mathematics and in
theoretical physics. The first use of supersymmetry was in string theory, and
it has since been considered a valuable tool for quantizing relativistic field
theories, extending as far as quantum gravity. Beyond this purely theoretical
purpose, it has also found applications in condensed matter physics, atomic
physics, and nuclear physics. In the field of nuclear physics, exerimental
evidence has demonstrated the existence of supersymmetry in certain nuclei.

2 Definitions and Key Concepts

2.1 Lie Algebras

A Lie algebra g is defined as a vector space L over a field F equipped
with a bilinear operation [, ] : L×L→ L called the commutator bracket [6].
In this paper, the field shall be either R or C in which case the Lie algebra
shall be called real or complex, respectively. The commutator satisfies the
additional properties:

[A,B] = −[B,A] (2.1)

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 (2.2)
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Often, the Lie algebra will consist of linear transformations on an un-
derlying vector space, in which case the commutator naturally is defined
as

[A,B] := AB −BA (2.3)

Now let Xα be a basis for the vector space L. Since [Xµ, Xν ] ∈ L, it can
be expressed as a linear combination of the Xα, so that

[Xµ, Xν ] =
∑
λ

cλµνXλ (2.4)

the quantities cλµν are the structure constants of the Lie algebra.
Lie algebras appear in many areas of theoretical physics, ranging from

the Poisson bracket {f, g} :=
∑

i(
∂f
∂qi

∂g
∂pi
− ∂f

∂pi
∂g
∂qi

) in classical mechanics and
symplectic geometry to the celebrated Lie derivative LX(Y ) on Riemannian
manifolds used in general relativity theory. Perhaps most notable among
these is the application of the commutator in the Heisenberg formulation of
quantum mechanics, giving the equation of motion dA

dt = i
~ [H,A] + ∂A

∂t .
We call a subspace M of L that satisfies [M,M ] ⊆M a Lie subalgebra h

of g. If M satisfies the stronger condition that [L,M ] ⊆M then it is called
an ideal of g. A Lie algebra that has no nontrivial ideals is called simple.
If the Lie algebra can be decomposed as a direct sum g =

⊕
i hi of simple

subalgebras hi so that [hi, hj] = 0 for i 6= j (hi is an ideal), then we call g
semisimple.

At the end of the 19th century, the semisimple Lie algebras over C were
completely classified, primarily due to the work of Cartan. All semisimple
algebras are known to be expressible as a direct sum of simple algebras from
the following list [6]:

Name Cartan Label Label in Physics Matrix Realization

Special Linear A(n) sl(n+ 1) Tr(X) = 0
Special Orthogonal B(n) so(2n+ 1) XT = −X

Symplectic C(n) sp(2n) JX = −XTJ
Special Orthogonal D(n) so(2n) XT = −X

Exceptional G2 G2

F2 F2

E6 E6

E7 E7

E8 E8
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Where above, J =

(
0 In
−In 0

)
.

The Lie algebras of particular importance shall be the real Lie algebras
u(n) and su(n). u(n) can be represented as the set of skew-Hermitian ma-
trices so that X† = −X, and su(n) is obtained by imposing tracelessness on
these operators.

2.2 The Harmonic Oscillator Representation for Bosons and
Fermions

Let bα and b†α, α = {1, . . . , n} be the creation and annihilation operators
for bosons, each satisfying commutation rules akin to those of the quantum
harmonic oscillator:

[bα, b
†
β] = δαβ, [bα, bβ] = [b†α, b

†
β] = 0 (2.5)

Now consider the fermion operators ai, a
†
i , i ∈ {1, . . . ,m}.

For the fermion operators, there are instead anti -commutation rules.
These rely on the introduction of the anti-commutator, defined much like
the commutator on operator algebras:

{X,Y } := XY + Y X (2.6)

With this, the anti-commutation rules are:

{ai, a†j} = δij , {ai, aj} = {a†i , a
†
j} = 0 (2.7)

We further have that the boson operators and the fermion operators
commute

[bα, ai] = [b†α, ai] = [bα, a
†
i ] = [b†α, a

†
i ] = 0 (2.8)

From this we can form the operator products:

Bαβ = b†αbβ, Aij = a†iaj (2.9)

As well as the mixed products

Y
(+)
iα = a†ibα, Y

(−)
iα = b†αai (2.10)

The first two are both boson operators while the second two are fermion
operators. From the commutation relations of (2.5) and (2.7) we have that
[3]
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[Bαβ, Bγδ] = b†αbβb
†
γbδ − b†γbδb†αbβ = δβγBαδ − δαδBβγ (2.11)

[Aij , Akl] = a†iaja
†
kal − a

†
kala

†
iaj = δjkAil − δilAjk (2.12)

From this it is clear that we can form any element in the algebra from
taking appropriate commutators:

[B,B] = B (2.13)

[A,A] = A (2.14)

From these relations, we see that the algebras generated by the B and
A can be put into isomorphism with u(n) and u(m), respectively. We now
have the additional anticommutation relations:

{Y (+)
iα , Y

(−)
βj } = a†ibαb

†
βaj + b†βaja

†
ibα = δijBβα + δβαAij (2.15)

So that {Y, Y } ∈ A ∪B. Lastly:

[Y
(+)
iα , Bβγ ] = a†ibαb

†
βbγ − b

†
βbγa

†
ibα = δαβY

(+)
iγ (2.16)

Using this same logic it is easy to see in general that [3]

[Y
(±)
iα , Bjk], [Y

(±)
iα , Aβγ ] ∈ Y (±) (2.17)

This lengthy, but elementary example shall later be referred to as the
graded Lie Superalgebra u(n/m).

2.3 Graded Lie Algebras

In general a Z-graded Lie algebra is a Lie algebra where the underlying
vector space of g is a graded sum g =

⊕
i gi, and we have [gi, gj ] ⊆ gi+j .

Motivated by this pervious example, we consider more generally what it
means to introduce a Z2-grading on a Lie algebra. As we had before with the
two distint sets of boson (B,A) and fermion (Y (±)) generators, we consider
a vector space over two sets of generators, denoted Xi and Yi. A Z2-graded
Lie algebra or Lie superalgebra g∗ is the vector space spanned by these
generators and closed under commutation, along with anticommutation in
the second family. We have the properties [1, 4]:

[Xi, Xj ] = ckijXk

{Yi, Yj} = fkijXk

[Xi, Yj ] = dkijYk

(2.18)
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As before, the ckij , f
k
ij and dkij are called graded Lie structure constants. In

the previous example, the Xi would represent the bosonic elements while the
Yi would represent the fermionic elements. For this reason, these elements
are appropriately titled bosonic and fermionic, respectively.

Additionally, as with ordnary Lie algebras, there is an analogue of the
Jacobi identity that must hold, [4]:

[Xi, [Xj , Xk]] + [Xj , [Xk, Xi]] + [Xk, [Xi, Xj ]] = 0

[Xi, [Xj , Yk]] + [Xj , [Yk, Xi]] + [Yk, [Xi, Xj ]] = 0

[Xi, {Yj , Yk}] + {Yj , [Yk, Xi]} − {Yk, [Xi, Yj ]} = 0

[Yi, {Yj , Yk}] + [Yj , {Yk, Yi}] + [Yk, {Yi, Yj}] = 0

(2.19)

We define a graded Lie subalgebra as a subspace of g∗ that is closed under
commutation and anti-commutation [1] [2]. Additionally we define an ideal
of a graded Lie algebra as a subspace of g∗ that is closed under commutation
and anticommutation with all elements of g∗. A simple graded Lie algebra
is one with no nontrivial ideals.

Occsaionally, instead of definining the anticommutator as a distinct en-
tity seperate from the commutator, it is useful to define a Lie superbracket
on all elements X and Y by

[A,B]S = −(−1)|A||B|[B,A]S (2.20)

where |A| denotes the degree of A, which is either 0 of 1 depending on
whether A is in the bosonic or fermionic part of the algebra.

2.4 Classification of Graded Lie Algebras

The classification of complex finite dimensional simple graded Lie alge-
bras was first done by by Kac [5].

Name Kac Label Label in Physics

Special Unitary A(n,m) su(n+ 1/m+ 1)
Orthosymplectic B(n,m) osp((2n+ 1)/2m)
Orthosymplectic D(n,m) osp(2n/2m)

Others C[n]
A[n]
P [n]
F [4]
G[3]

D[1, 2, α]
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We can define su(n/m) analogously as we have defined u(n/m) previ-
ously in section (2.2), but with the extra constraint of tracelessness for the
initial boson and fermion operators. Similarly, the orthosymplectic groups
can be obtained by requiring that the individual bosonic/fermionic parts
of the superalgebra preserve a requisite bilinear form [5]. The other types
of Lie superalgebras find less application in physics and so are outside the
scope of this paper.

As before, particular attention shall be paid to the non-simple superal-
gebra u(n/m).

3 The Representation Theory of Graded Lie
Algebras

3.1 Over Lie Algebras

A very important topic in the representation theory of Lie algebras is
the subject of their tensor representations under the action of the symmetric
group.

Consider the action of u(n) on tensors of rank N . The irreducible repre-
sentations are given by tensors of specific symmetry type under interchange
of indices. To each such representation, there is a corresponding partition of
N into λ1 + . . .+ λn where each λi is a non-negative integer and we require
λ1 ≥ . . . ≥ λn. Graphically, this is often described by a Young tableau [7].
For example, in the case λ1 = 4, λ2 = 3, λ3 = 1, λ4 = 1, we get:

λ1 : ����

λ2 : ���

λ3 : �

λ4 : �

(3.1)

Such a tableau would be denoted [λ1, λ2, λ3, λ4] = [4, 3, 1, 1]. The totally
symmetric case [N ] is represented by the following Young tableau:

λ1 : � . . .�︸ ︷︷ ︸
n

λi = 0,∀i > 1

(3.2)

Whereas the totally anti-symmetric case would be the vertical arrange-
ment, λi = 1, ∀i.
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3.2 Return to the Oscillator Representation: N-particle states

We now consider generalizations to Young supertableaux. The case that
we are most interested in is u(n/m). It is worth studying this algebra to
get an understanding of how the operators Bαβ and Aij interact. We follow
the method in [3]. As is standard, the raising and lowering operators act

on the vacuum state |0〉. The one-particle states are b†α |0〉 and a†i |0〉. The
N -particle states are then given by:

b†α1
...b†αk︸ ︷︷ ︸
k

a†i1 ...a
†
iN−k︸ ︷︷ ︸

N−k

|0〉 (3.3)

From this, the number operator is just:

N̂ = N̂B + N̂F =
∑
α

b†αbα +
∑
i

a†iai (3.4)

More compactly, we can write this as

N̂ =
∑
a

ζ†aζa, (3.5)

Where we have defined the ζa to be ζa = bα for a = {1, . . . , k} and
ζa = ai−k for a = {k + 1, . . . , N}. These shall be called the super -creation
and annihilation operators.

An N -particle state is symmetric in the first k boson indices and an-
tisymmetric in the last N − k fermion indices. As a young tableau, it is
then:  k︷ ︸︸ ︷

� . . .�,

�
...
�
N−k

 (3.6)

Such a state is then a direct product of a symmetric u(n) representation
and an antisymmetric u(m) representation. In general, the space of all N -
particle states inside of u(n)⊗ u(m) is

( N︷ ︸︸ ︷
� . . .�, 0

)
⊕
( N−1︷ ︸︸ ︷
� . . .�,�

)
⊕

( N−2︷ ︸︸ ︷
� . . .�,

�
�

)
⊕ . . .⊕

0,

�
...
�
N

 (3.7)
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The fermionic operators S(+), S(−) act as ladder operators on this space.
Because of this the N -particle states � . . .� are irreducible subrepresenta-
tions of u(n/m).

3.3 Tableaux over Lie Superalgebras

The N -particle states above shall form a subrepresentation that will be
labelled by the Young supertableaux:

λ1 = N : �� . . .��︸ ︷︷ ︸
N

λi = 0,∀i > 1

This shall be called the totally supersymmetric representation [1]. It is
the representation in which all bosonic degrees of freedom are completely
symmetric, and all the fermionic degrees of freedom are completely anti-
symmetric. This space is of chief importance in application to the study of
nuclei. For information on the more general case of supertableaux, consult
[3].

In general, as before, when studying the tensor representation of u(n/m),
we pick a set of positive integers [λ1, . . . , λn] whose sum shall be the tensor
rank. In addition to not allowing for more than n rows this time, we also
do not allow any of the λi to exceed m, so we cannot have more than m
columns.

3.4 Branching

The maximal Lie algebra for u(n/m) is the direct sum of the two bosonic
Bαβ andAij , u(n)⊕u(m). We have seen before how a totally supersymmetric
state branches, and indeed in general the branching of u(n/m) into u(n)⊕
u(m) is similar to the classical u(n + m) to u(n) ⊕ u(m) [1]. In the latter
case:

N︷ ︸︸ ︷
� . . .� = (

N︷ ︸︸ ︷
� . . .�, 0)⊕ (

N−1︷ ︸︸ ︷
� . . .�, 1)⊕ . . .⊕ (0,

N︷ ︸︸ ︷
� . . .�) (3.8)

and the former case of � . . .� is illustrated in section (3.2). The branching
is

[N ]→ (N, 0)⊕ (N − 1, 1)⊕ . . .⊕ (0, N) (3.9)

The total number of bosons plus fermions is the same in each part of the
reduction.
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4 Casimir Operators

4.1 Over Lie Algebras

For an ordinary Lie algebra we have the standard relation:

[Xi, Xj ] = ckijXk (4.1)

There is then a natural metric tensor on this vector space given by:

gij = clikc
k
jl (4.2)

where we have now made use of Einstein summation convention. For semisim-
ple Lie algebras, this is nonsingular, and has an inverse [6] that we write
as

gij = (g−1)ij (4.3)

The invariant quadratic operator:

C2 = gijXiXj (4.4)

is easily seen to commute with all Xk, and thus makes it Casimir. A well-
known example is the Casimir operator for total angular momentum J2 =∑

i J
2
i in the angular momentum algebra so(3).

In general, an operator C in the universal enveloping algebra of a Lie
algebra is called a Casimir operator if

[C,Xk] = 0, ∀Xk ∈ g (4.5)

A Casimir operator of degree d is one that can be written as a sum [7]:

Cd =
∑

a1,...,ad

ca1,...,adXa1 . . . Xad (4.6)

4.2 Over Lie Superalgebras

The notion of a Casimir operator over a Lie algebra can be generalized
naturally to Lie superalgebras. We call an operator C superCasimir if it
satisfies:

[C,Xa] = 0, [C, Yb] = 0, ∀Xa, Yb ∈ g∗ (4.7)
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Over u(n/m), the super-Casimir operators are known. Of particular im-
portance is their action on the totally supersymmetric representation [N ].
We have in fact already constructed one Casimir operator: the number oper-
ator C1 = N̂ whose eigenvalue is just N when acting on this representation.
There is also a quadratic operator C2 with eigenvalue N(N +n−m− 1), as
demonstrated in [1].

5 Applications

5.1 Dynamic Symmetry and Spectrum Generating Algebras

A useful area of applications of Lie algebras involves the case when the
Hamiltionian can be expressed as a functional of the elements of the algebra:

Ĥ = f(X1, . . . , Xn), Xα ∈ g (5.1)

The Lie algebra is then called the spectrum generating algebra for this
Hamiltonian [1, 2, 7]. Of particular interest is when the functional f is a
polynomial in each of the Xi, so that we can write:

Ĥ = E0 +
∑
i

aiXi +
∑
i1,i2

ai1,i2Xi1Xi2 + ... (5.2)

The special case of a dynamic symmetry occurs when the elements of
the Hamiltonian are all Casimir operators for some chain of subalgebras
g ⊃ g′ ⊃ . . ., then we can write:

Ĥ = f(C1, . . . , Cm) (5.3)

Because these are all Casimir operators for this chain of algebras, it is
possible to diagonalize all of them simultaenously and obtain an analytic
equation for the energies in terms of the Casimir eigenvalues (the quantum
numbers).

5.2 Spectrum Generating Superalgeabras

The concept of a spectrum generating algebra can be generalized to a
Hamiltonian that is written as a functional both of the bosonic and fermionic
operators:

Ĥ = f(X1, . . . Xn, Y1, . . . , Ym) (5.4)
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Again the special case of when this Hamiltonian can be written in terms
of superCasimir operators for a chain of superalgebras g∗ ⊃ g∗

′ ⊃ . . . is
called dyanmical supersymmetry. Again, the superCasimir operators can
be simultaneously diagonalized and give an analytic expression for all of the
energies in terms of the quantum numbers. This is a powerful tool when
studying systems of bosons and fermions.

5.3 Interacting Boson Model in the Atomic Nucleus

In this example of application, no distinction shall be made between
protons and neutrons, and they shall instead both be called “nucleons”.
Individually, each nucleon is a fermion, but when they pair, each pair acts
much like a boson. In this model, nucleons pair in either a J = 0 s-state or
five J = 2 d-states, forming a six-dimensional representation of the group
U(6) [1, 2]. Although there is additional precision gained by not treating the
proton and neutron pairs on equal footing, we shall ignore that correction in
this paper. We label each type of bosonic pairing by an index a ∈ {1, . . . , 6}.
We then have that the Lie algebra is generated by

Gαβ = b†αbβ (5.5)

Now u(6) has three chains, corresponding to sets of Casimir operators
that would give three different dynamic symmetries:

(I) u(6) ⊃ u(5) ⊃ so(5) ⊃ so(3) ⊃ so(2)

(II) u(6) ⊃ su(3) ⊃ so(3) ⊃ so(2)

(III) u(6) ⊃ so(6) ⊃ so(5) ⊃ so(3) ⊃ so(2)

(5.6)

The spectra of the nuclei are obtained by finding the eigenvalues of the
hamiltonian acting on the totally symmetric basis [7] [N ] = �� . . .�.

The Hamiltonian given by (I) can be written as a set of parameters
(E0, ε, α, β) multiplying all posibile combinations of Casimir operators of
the algebra, to second order:

H(I) = E0 + εC1(u5) + αC2(u5) + βC2(so5) + γC2(so3) (5.7)

The Casimir operator for so(2) is omitted becasue this will only make
a difference if a magnetic field were present to split the orbital degener-
acy. The energies are then directly found in terms of the quantum numbers
N,nd, ν, n∆, L,ML that label the irreps of the first chain. Of these, only
nd, ν, L will contribute directly:
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E(I) = E0 + εnd + αnd(nd + 4) + βν(ν + 3) + γL(L+ 1) (5.8)

This type of symmetry is experimentally observed in 110Cd [1]. For the
second dynamic symmetry’s Hamiltonian, we have:

H(II) = E0 + κC2(su3) + κ′C2(so(3)) (5.9)

And the energies can be obtained in terms of the angular momentum
quantum number of the so(3) irreducible representation as well as the quan-
tum labels (Elliott numbers) for the su(3) representation.

E(II) = E0 + κC2(λ2 + µ2 + λµ+ 3λ+ 3µ) + κ′C2L(L+ 1) (5.10)

This type of dynamic symmetry is observed in 156Gd [1]. Lastly, the
Hamiltonian of the third dynamic symmetry is:

H(III) = E0 +AC2(so6) +BC2(so(5)) + CC2(so(3)) (5.11)

With energies similar to the first:

E(III) = E0 +Aσ(σ + 4) +Bτ(τ + 3) + CL(L+ 1) (5.12)

This type of dynamic symmetry is observed in 196Pt [1]. Note that all
the examples had even-even nucliei, as is necessary in order to have complete
pairing with no fermions left over. For examples of these energy spectra,
consult [1, 2].

5.4 Dynamic Supersymmetry in the Case of Unpaired Nu-
cleons

We now consider the case where, in addition to the paired bosons, there
are unpaired sets of nucleons that act as fermions. We proceed as in [1].
The ladder operators are:

b†α, α = {1, . . . , 6}

a†j,mj
= a†i , i = 1, . . . , k

(5.13)

with the b†α defined as before, and now the a†i representing the creation of
a fermion with total spin j and z-component mj . Our attention shall be
when j = 3/2 is the only allowed total angular momentum. We then have
k = 2j + 1 = 4.
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The Hamiltonian can be written as

Ĥ = ĤB + ĤF + ĤBF (5.14)

with a bosonic, a fermionic, and an interaction term. Each term can be
written out (as in [1]) as:

ĤB = E0,B +
∑
αβ

εαβb
†
αbβ +

∑
αα′ββ′

uαα′ββ′b
†
αb
†
α′bβbβ′

ĤF = E0,F +
∑
ik

ηika
†
iak +

∑
ii′kk′

uii′kk′a
†
ia
†
i′akak′

ĤBF =
∑
αβik

wαβikb
†
αbβa

†
iak

(5.15)

As before, we know that the algebra products b†αbβ, a†iak, b
†
αai, a

†
ibα form

the Lie superalgebra u(n/m), in this case u(6/4).
Now we wish to diagonalize the system’s total Hamiltonian in the super-

symmetric basis [N} = �� . . .�.
Let us study the branching of the Lie superalgebra su(6/4). One imme-

diate way is by reducing it to its maximal Lie algebra, su(6) ⊕ su(4). The
following possible branch patterns then occur:

u(6/4)
↙ ↘

uB(6) ⊕ uF (4)
↓ ↓

soB(6) ⊕ suF (4)
↘ ↙

↓ spin(6) ↓
soB(5) ↓ spF (4)

↘ ↙
↓ spin(5) ↓

soB(3) ↓ suF (2)
↘ ↙

spin(3)
↓

spin(2)

(5.16)

Where the spin(n) groups are isomorphic to the orthogonal so(n) Lie
groups but affort spinor representations in addition to the standard tensor
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representations. This means that the labels λi for the quantum numbers
may take half-integer values.

States can now be characterized by irreducible labels in the following
way:∣∣∣∣u(6/4) ⊃ uB(6)⊕ uF (4) ⊃ soB(6) ⊃ spin(6) ⊃ spin(5) ⊃ spin(3) ⊃ spin(2)
NB+F (NB, NF ) Σ (σ1, σ2, σ3) (τ1, τ2) (v∆, J) (MJ)

〉
(5.17)

The second possible branching is into an orthosymplectic algebra as fol-
lows:

u(6/4)
↓

osp(6/4)
↓

osp(5/4)
↙ ↘

soB(5) ⊕ spF (4)
↘ ↙

↓ spin(5) ↓
soB(3) ↓ suF (2)

↘ ↙
spin(3)
↓

spin(2)

(5.18)

The first case of splitting shall be of principal interest to us. We know
from section (4.2) that for Lie superalgebras u(n/m) there are linear and
quadratic Casimir operators. The rest follows from elementary knowledge of
Casimir operators on ordinary Lie algeabras and can be found in references
such as [7]. We can write a generic Hamiltonian for such a dynamic super-
symmetry in terms of parameters η, η′, β, γ, ei, i ∈ {1, . . . 7}, scaling every
possible combination of Casimir operators up to quadratic terms:

Ĥ =e0 + e6C1(u6/4) + e7C2(u6/4) + e1C1(uB6) + e2C2(uB6)

+ e3C1(uF 4) + e4C2(uF 4) + e5C1(uB6)C1(uF 4)

+ ηC2(oB6) + η′C2(spin6) + βC2(spin5) + γC2(spin2)

(5.19)
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giving energy eigenvalues of:

Ĥ =e0 + e6N + e7N(N + 1) + e1NB + e2NB(NB + 5)

+ e3NF + e4NF (5−NF ) + e5NBNF + ηΣ(Σ + 4)

+ η′(σ1(σ1 + 4) + σ2(σ2 + 2) + σ2
3)

+ β(τ1(τ1 + 3) + τ2(τ2 + 1)) + γJ(J + 1)

(5.20)

This energy formula gives a very definite branching structure to the
energy levels of odd nuclei. It is seen to be qualitatively matched by ex-
periment, and by adjusting the Hamiltonian’s parameters properly, we can
obtain a very close match to the experimentally observed splittings. Illus-
trated below is an example of this in 191Ir, taken from [2]:

6 Conclusions

In this paper, we have introduced the mathematical formalism of Lie super-
algebras and generalized many of the concepts from the theory of elementary
Lie algebras to this broader setting. The theory of irreducible tensor rep-
resentations has been developed and applied to describe the spectra of odd
nuclei using dynamic supersymmetry. Moreover, experimental evidence has
been presented. Currently, this is the only field with experimental validation
of the phenomenon of supersymmetry [1]. For more detailed descriptions of
the material , the reader is advised to consult with [2, 4]. For a more in-depth
treatment of the supertableaux and the representation theory of superalge-
bras, the reader should consult [3].
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