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Abstract

This lecture is intended to follow Phil’s talk on “Categorical Geometric Langlands and
Quantum Field Theory” and its relevance to the Langlands program. We start with a review
of field theory, extending the ideas of classical field theory to the path integral formulation
of quantum field theory (QFT). In particular we study the various physical “observables”
that arise out of the path integral, introducing the operator product expansion and Wilson
loops. Finally, we discuss disorder operators, whose insertion into the path integral changes
the space of fields that we integrate over to include singularities. For this, we study ‘t Hooft
lines via the picture of monopoles in 3D.

1 Recall of Last Lecture

Remember that for a given classical field theory consisting of

• A spacetime manifold M

• A space of sections (“fields”) a fiber bundle E ÑM .

• An action SrΦs from the space of field configurations into C.

we defined the partition function of our quantum field theory to be

Z “
ż

DΦ e´SrΦs. (1)

Where this is is a functional integral over the space of all fields known as the Feynman Path
Integral. The measure on this space is mathematically ill-defined in general.

Definition 1 (Classical Observable). A classical observable is a functional from the set of field
configurations to the ground field C.

Definition 2 (Observable). A quantum observable (which we will refer to as just an observable
in these lectures) is a functional from the a field theory into the ground field C. In the Feynman
picture, it can be seen as a statistical average of classical observables over all field configurations.

In the last lecture we began to focus on gauge theory, namely when X is an associated bundle
to a G-bundle for G a reductive Lie group.

There, we defined the corresponding operator

WRpγq :“ TrRpHolpA, γqq (2)

for γ a closed curve. We saw that for γ Ñ γ1 the operator product expansion gives us that

lim
γÑγ1

WRpγqWR1pγ1q “
ÿ

α

nαWRαpL
1
q (3)

where nα is the multiplicity with which the representation Rα appears in R bR1.
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2 Montonen-Olive Duality

We will be working in 4D N “ 4 Supersymmetric Yang-Mills theory. This theory takes a little
bit of time to describe in detail, but the fields of primary interest to us in this theory will be a
connection 1-form A known as the “gauge field” and its curvature form F together with an ad-g
valued 1-form φ. These play distinct roles in the discussion that follows.

With the stage set, this is now our idea:

Concept 3 (Montonen-Olive Duality). In 4D N “ 4 supersymmetric Yang-Mills theory with
gauge group G and complex coupling constant τ , any correlator of observables

〈O1 . . .On〉τ,G :“

ż

DtFieldsuO1 . . .On e´S

can be rewritten in terms of Yang-Mills theory with inverse coupling constant ´1{τ on the Lang-
lands dual group Ǧ as a correlator of dual operators Õ1 . . . Õn

〈O1 . . .On〉τ,G “
〈
Õ1 . . .On

〉
´1{τ,Ǧ

.

In particular N “ 4 super Yang-Mills theory has a CP1 family of topological twists. Two of
these will be relevant here, known as the Â-model and the B̂-model1. This twisting introduces an
asymmetry between G and Ǧ.

In the Ǧ theory: the B̂ model, A and φ combine into a (complex-valued) connection A “ A`iφ.
The equations of motion together with supersymmetry requires A to be flat in the B̂ model. As
long as this flat connection is irreducible, it is the only relevant variable in the B̂.

Now let L Ă M be an oriented 1-manifold embedded in M . On the B̂-model side, we can
consider taking the holonomy of the connection A along L, when L is closed, giving us a Wilson
loop. The B̂ model condition on the flatness of A implies that the holonomy of the Wilson loop
only depends on the homotopy class of L

If M has boundaries, we can let L be an open 1-manifold connecting two ends of M . Then,
the Wilson operator will give us matrix elements between the initial and final states of the theory.
Because Wilson operators geometrize ReppǦq, the space of physical states living on the boundary
of M is exactly Ř for some Ř P ReppǦq. A Wilson loop connecting boundary components gives
us a matrix element between initial and final vectors in Ř.

In the G theory: the Â model, A and φ instead obey a different equation:

F ´ φ^ φ “ ‹DAφ. (4)

This equation is analogous to the equation of motion for the 2D A models. We will see how the
Bogomolny equations for magnetic monopoles arise as a special restriction of this equation in the
next section.

From the above discussion, we should ask

Question. What is the dual operator to a Wilson line?

From the physics viewpoint, ‘t Hooft showed in the 1980s that MO duality will exchange a
Wilson line (a type of “order operator”) on one side with something known as a ‘t Hooft line (a
type of “disorder operator”) on the other side.

1This notation comes from the fact that, upon compactification down to two dimensions, these models become
the A and B topological sigma models discussed before
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As we mentioned last class, we can understand the insertions of ‘t Hooft lines in the path
integral as imposing divergence conditions on the curvature form F so that in local coordinates
x1 . . . x3 perpendicular to the line we have

F p~xq „ ‹3d
´ µ

2r

¯

(5)

where µ is an element of the lie algebra g. It turns out that for us to be able to find a gauge field
A whose curvature F satisfies this condition, we must have that µ is a Lie algebra homomorphism
RÑ g obtained as the pushforward of a Lie group homomorphism Up1q Ñ G.

Another way to say this is (after using gauge freedom to conjugate µ to a particular Cartan
subalgebra) that µ must lie in the coweight lattice Λcw. Note though, that if we perform a gauge
transformation by

exppiπpEα ` E´αq{
?

2α2q

this will send
µÑ µ´ 2αα ¨ µ{ 〈α, α〉

which corresponds to a Weyl group action on µ. This turn out to be the only degeneracy, so we
have that ‘t Hooft operators are classified by the space:

ΛcwpGq{W .

But this is also the same as
ΛwpǦq{W .

We know that this is the space of representations of the Langlands dual group.

Proposition 4. ‘t Hooft operators in gauge group G are classified by irreducible representations
of Ǧ.

The operator product expansion of Wilson lines captures the monoidal category structure of
ReppǦq. By duality, this category must also be capturing the OPE of ‘t Hooft lines. Can we say
anything about the OPE of ‘t Hooft lines in terms of G?

3 Operator Product Expansion of ‘t Hooft Lines

Because the operator product expansion is a local process, we can assume our base manifold looks
like anything. It turns out to be fruitful to take X “ I ˆC ˆR. Here, I is the unit interval p0, 1q,
C is a Riemann surface (which we can take to be CP1 WLOG) and R is regarded as the “time”
direction and adopt a Hamiltonian point of view on W “ I ˆ C.

The boundary conditions on I matter here, and it turns out that in the Â model we should
consider Dirichlet boundary conditions on one end and Neumann boundary conditions on the
other. In the language of gauge theory, Dirichlet boundary conditions demand the bundle to be
trivial on that boundary, while Neumann boundary conditions allow for it to be arbitrary.

Now ‘t Hooft lines look like points on the 3-manifold W “ IˆC. We can locally take φ “ φ4dx
4

so that on W , φ behaves as a scalar. Then, on W , Equation (5) reduces to the Bogomolny
equations for monopoles:

F “ ‹3DAφ.
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Let’s write a local coordinate z P C parameterizing C and σ P R parameterizing I. Gauging away
Aσ “ 0, these equations reduce to the following:

BσAz̄ “ ´iDz̄φ.

This condition can be interpreted as stating that the isomorphism class of the holomorphic G-
bundle corresponding to the connection Az̄ is independent of y. This is because the right hand side
corresponds to changing A by a gauge transformation generated by ´iφ. Thus, gauge transforming
A Ñ A ` iφ gives us a holomorphic connection on the new G-bundle, putting it in the same
holomorphic class.

The only place where this is violated is at the values σ where the Bogomolny equations become
singular. This is where we have the insertion of a ‘t Hooft operator.

More explicitly, the Langlands dual is defined so that any highest weight representation ρ̂ :
Ĝ Ñ Up1q is dual to a morphism ρ : Up1q Ñ G which can be viewed as a clutching function
for a G bundle on the Riemann sphere CP1. Complexifying this gives ρ : G Ñ Cˆ – CP1

ztp, qu,
AKA gluing a trivial bundle over CP1

ztpu to a trivial bundle over CP1
ztqu. This is exactly what

we call a Hecke modification of type ρ. Every holomorphic G-bundle over CP1 arises in this way.
Phil has taught us before that we should recognize the space of Hecke modifications as the affine
Grassmannian GrG “ Gppzqq{Grrzss

It turns out that for N “ 4 supersymmetric Yang Mills, the space of physical states is the
(intersection) cohomology of the space of solutions to the Bogomolny equations with prescribed
singularities labeled by Ři, pi

2. We denote this space by ZpŘ1, p1, . . . , Řk, pkq. Because the under-
lying field theory is topological, and because the space of n-tuples on W is simply connected (so
no monodromy can occur), we have that Z does not depend on the explicit positions of any of the
pi. Thus we can write HpŘ1, . . . Řkq “ H˚pZq and define this as the space of physical states for
this given set of line defect insertions.

Further, ZpŘ1, . . . Řkq turns out to topologically be a simple product
śk

i“1ZpŘiq where ZpŘiq

is the same as the compactified space N pŘiq of Hecke modifications of type Ři, then by using the
fact that the product of cohomologies is the cohomology of the product we obtain:

HpŘ1, . . . Řkq “

k
â

i“1

HpŘiq (6)

This suggests that there is an isomorphism of Ři and HpŘiq as vector spaces. Indeed, it can be
shown that such an isomorphism is the only way for these categories of (finite dimensional) vector
spaces to have the same monoidal structure.

I might try to write more about this or expand on the previous two paragraphs

4 The Action of Wilson Loops on Boundary Conditions
(time permitting)

If we assume that M “ ΣˆC for C a compact Riemann surface and Σ a (not necessarily compact)
surface with boundary, we can study loop insertions more naturally. The following is a simplified
picture of the general case:

2In general, there are so-called “instanton corrections” to this space of states, but they are absent in this situation
for reasons relating to supersymmetry.
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Definition 5 (Hitchin’s Moduli Space). MHpG,Cq is the space of solutions to the Hitchin equa-
tions on a curve C.

If we consider C to be “small” relative to Σ, for each point in Σ, the additional data for the
field configurations on the space C must give us a point in this moduli space. That is, we get a
nonlinear sigma model on Σ ÑMpG,Cq.

Let the curve defining a (Wilson or ‘t Hooft) operator be γ “ γ0 ˆ p in Σ ˆ C with p a point
on C and γ0 a curve on Σ. Let BΣ0 be a connected component of BΣ. A boundary condition for
the field theory on Σ0 is called a brane.

Let γ0 approach this boundary. On the B̂ side, the insertion of a Wilson loop acts as an
associative endofunctor for the category of boundary conditions on the topological sigma model on
Σ with targetMHpG,Cq. This target space, with choice of complex structure J , can be identified
with MflatpG,Cq.

This functor will depend on the point p P C corresponding to the Wilson line. Consider the
productMflatpG,CqˆC. There is a universal G-bundle E over this space, given by taking a point
in Mflat and restricting the corresponding bundle to a point in C.

Given any coherent sheaf on Mflat, we can tensor this with RpEq. This is the action of the
Wilson loop insertion on the space.

Consider the structure sheaf Ox of a point x P MflatpǦ, Cq. For any representation Ř, the
Wilson loop maps Ox to Ox b Ř. Thus Ox is an eigenobject for the functor WŘppq, which acts
on it by tensoring it with the vector space ŘpEpqx. In fact, letting p vary we see that it is an
eigenobject for all WŘppq. Another way of saying this is that the eigenvalue is the flat Ǧ-bundle
ŘpEqx on C.

More directly, this flat bundle is obtained by taking the flat principle bundle on C corresponding
to x and forming the associated bundle via Ř.

The action of the ‘t Hooft operators is more difficult to see. They will end up acting by
Hecke transformations on the space of boundary conditions. By Monotonen-Olive duality, it turns
out that the brane corresponding to a fiber of the Hitchin fibration in MHpG,Cq is a common
eigenobject for all operators.
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