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Abstract

In this project, we study the molecular capacitances of n-carbon icosahedral fullerene molecules.
Prior studies, using density functional theory (DFT), have demonstrated a remarkable lin-
ear relation between the capacitance and the fullerene radius. Although such relationships
have been discovered in a number of carbon molecules, the underlying physics behind this
relationship is not well-understood. Towards this end, we make use of a simple graph-based
model inspired by the Hückel method to study the effect of icosahedral symmetry in causing
a gap in the valence electronic structure of these molecules. By solving the associated eigen-
value problem, the orbital energies and their degeneracies are expressed in terms of two free
Hückel parameters, α and β. In order to obtain these parameters, we compare the low-lying
energies of the Hückel calculations to the analytically-known energies for an electron on a
sphere of size equal to the fullerene radius. By adding the orbital energy gap obtained from
the Hückel calculations to previous classical estimates of the capacitance, we accurately re-
produce the full DFT results. This gives evidence for a simple mechanism for the capacitance
of these molecules. In addition, we discuss implications for the graphene limit of infinitely
large fullerenes.

Summary

In the field of nanotechnology, it is vital to understand the electronic properties of ma-
terials. In the field of energy storage, carbon materials have shown potential application. In
order to study these properties, several methods are used such as density functional theory
(DFT). However, these methods require substantial computational power. Therefore, in this
project, we use a simple, graph-based model to calculate the electronic structure of carbon
fullerenes. Carbon fullerenes are approached because of their icosahedral symmetry which
simplifies the calculations and enables a comparison with spherical systems. By combining
these results with earlier results using classical electrostatics we accurately reproduce the
DFT results for these molecules. This gives us new insight into how these molecules store
charge.



1 Introduction

In recent years, nano-scale physics has played a ubiquitous role across many exciting

arenas of development in science and technology: materials science, exotic phases of matter,

biochemistry, both high-performance and commercial electronics, advanced energy storage,

and quantum computing. In all of these areas, an understanding of molecular systems and

their respective properties is essential. At a fundamental level, all of these systems’ properties

are dictated by the principles of quantum mechanics. These systems range from atoms and

molecules to superconductors [1, 2], topological materials [3], and macroscopic biological

molecules [4].

In the field of nanotechnology, understanding these properties is crucial for practical

studies of energy storage, charge dissipation, and the electronic structure of molecules. One

of the primary modern challenges is determining the physical limitations of developing de-

vices with exceptional energy-storage capacity (e.g. batteries and supercapacitors). Carbon

materials have shown promise in this application [5], for example those based on activated

graphene [6].

In studying the capacitance of molecules, the process of electron detachment and attach-

ment plays a key role. The relevant energies are the ionization potential I and the electron

affinity A. The ionization potential is the energy required to remove an electron from a

molecule while the electron affinity is the energy gained from adding an electron to a neutral

molecule. The energy cost of moving an electron from one molecule to another is then I−A.

The capacitance C of the molecule, defined as the voltage difference per unit charge moved,

is then given by Iafrate’s formula [7]:

C =
e2

I − A
=

∆Q

∆V
(1)

where e is the charge of the electron. The capacitance is the principal quantity of study for

understanding the ability of a material or molecule to store charge.
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These molecular systems, which consist of many interacting electrons, are described by

quantum mechanics. In particular, they fall in the regime of quantum many-body theory. All

such quantum systems obey the Schrödinger equation, which can be written as an eigenvalue

problem:

Ĥψ = Eψ (2)

Here Ĥ is a linear operator describing the energetics of the many-body system, called the

Hamiltonian. ψ is a vector, called the state vector or sometimes wavefunction of the system,

describing the quantum state of the electrons of the system. E is just a number: an eigenvalue

of Ĥ. It corresponds to the energy of the state ψ, and vectors ψ satisfying this equation are

called eigenstates with energy E.

For systems with multiple interacting electrons, this equation becomes utterly complex.

The many-body Schrödinger equation is impossible to solve analytically. For this reason,

many approximate methods have been developed over the past century. The main framework

for treating molecules is molecular orbital theory [8]. Here, the states of bonded electrons,

which form the molecular orbitals, are regarded as linear combinations of the states describ-

ing individual atomic orbitals. Molecular-orbital-based methods have formed a substantial

and important part of the field of computational quantum chemistry. Among these, the most

thorough and computationally involved are the Hartree-Fock [9] methods, and Density Func-

tional Theory (DFT) [10]. Despite the remarkable success, these methods require substantial

computational resources and it often remains difficult to interpret the underlying mechanisms

responsible for electronic structure. For instance, the most accurate calculations come from

computationally intense density functional theory (DFT), despite this, this method scales

poorly with increasing system size. However, simpler alternatives such as the Hartree-Fock

still require substantial computational power and have the same scale limitation apart from

difficulties in separating the quantum contributions from the classical ones.

Much simpler is the Hückel Method, which is a graph based method [11] that uses a
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simplified Schrödinger equation to qualitatively reproduce molecular energies. Alternative,

simpler approaches to Hartree-Fock and DFT often involve semiclassical physics. These use

classical electrostatic approximations to model molecules as an alternative to solving the full

Schrödinger equation. In such semiclassical methods, part of the system is treated classically

while the remainder is left to a quantum-mechanical description [12]. In all of the above

approaches, symmetry plays an important role. Symmetry in quantum mechanics implies

that many features of molecules do not vary under certain transformations, which puts

sharp constraints on the energies and states of a quantum system [13]. For this reason,

taking advantage of any symmetry of the molecule greatly simplifies the calculations.

Progress in understanding aspects of many-electron systems from analytic, semi-classical,

and symmetry-based points of view is likely to lead to fundamental insights in both the

computational modeling of these systems, as well as in the electronic structure across a

broad class of molecular systems.

Towards this goal, in this project we will study fullerenes, which are composed of con-

nected carbon atoms that form a closed mesh. Fullerenes can look like hollow spheres, ellip-

soids or tubes. These particular molecules are of widespread interest and have a very rich

literature. They have many applications ranging from electrical energy storage to gene and

drug delivery [14]. In this project, we will focus on fullerenes with icosahedral symmetry, such

as the famed C60 molecule [15]. These molecules provide prototypical examples of fullerenes,

and their symmetry structure allows them to be much more easily studied, both computa-

tionally and analytically [16]. Moreover, the molecular capacitance of this class of fullerenes

exhibits remarkably smooth scaling properties that are linear in the radius of the molecules,

as shown in [17]. In that paper, it was found through intensive DFT that the capacitance of

such fullerenes obeys to high accuracy:

C = 4πε0κR + C0, κ ≈ 0.562, C0 ≈ 1.043 au. (3)
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This looks very similar to the classical capacitance scaling

C = 4πε0R (4)

of conducting spheres. In the case of fullerenes, though, there is a nontrivial dielectric con-

stant κ, as well as a nontrivial intercept C0. Such “quasi-classical” scaling of the valence

electronic properties of the molecule begs for a simple, analytic explanation.

In a more recent paper [18], it was demonstrated that the electron detachment energies of

icosahedral fullerenes can be decomposed into a classical electrostatic component, by treating

them as conducting spheres, but also as an inherent quantum mechanical component. This

quantum aspect, related to the electron detachment energies, was conjectured to be caused by

the icosahedral deviation of the molecules from being perfect spheres. Due to this, the energy

levels of the molecular orbitals split [19]. In particular, it causes a split from the highest-

occupied molecular orbital (HOMO) and the lowest-unoccupied molecular orbital (LUMO).

This split is known as the HOMO-LUMO gap (∆En) as shown in Figure 1. This energy

gap is responsible for many of the electronic characteristics of materials, and is specially

important in semiconductors and capacitors. Thus, understanding both the classical and

quantum contributions to the capacitance of these fullerenes opens a window for developing

new carbon-based materials for energy storage.

Figure 1: Highest-occupied molecular orbital (HOMO) and lowest-unoccupied molecular or-

bital (LUMO) in a molecular orbital diagram.
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In general, the characterization of the HOMO-LUMO gap requires DFT. However, since

this previous research highlights that the HOMO-LUMO gap is primarily due to the icosa-

hedral breaking, a simpler approach can be used instead. We apply a simple, graph-based

model, inspired by Hückel method, where molecules are treated as graphs in order to solve the

eigenvalue problem and obtain the energies of the molecular orbitals. The fullerenes treated

in this project were C60, C180, C240, C540, C720, C960, C1500 and C2160 which are all icosahedral

fullerenes with a HOMO-LUMO gap. We choose this range of fullerenes to demonstrate the

multi-scale validity of the capacitance relation, and to understand the “graphene limit” of

an infinitely large fullerene.

In doing so, we observe the icosahedral symmetry from a more refined and quantita-

tively sound point of view. By comparing the eigenvalue spectrum with energies obtained

from a spherical, free electron model, we extract the dimensionful values of the otherwise

undetermined Hückel parameters and reproduced with accuracy the HOMO-LUMO gap of

the system. Therefore, we are able to describe the features of these fullerene molecules, es-

pecially the larger ones. In addition, combined with previous semi-classical results for these

molecules, evidence for a simple mechanism for the capacitance of these molecules is given.

2 Methods

In order to study fullerenes and observe the splitting of the energy levels caused by the

icosahedral symmetry breaking from each molecule, the goal is to obtain both the HOMO

and LUMO eigenvalues. From these, we can obtain the HOMO-LUMO gap. To obtain the

eigenvalues, the Hückel method is used. For small enough fullerenes, like C60, the relevant

molecular graphs can be constructed manually, while for larger fullerenes require a specialized

program. Using a Python code, we are able to process the eigenvalues and obtain the diagram

and HOMO-LUMO gap in terms of the Hückel parameters (discussed below). To obtain the
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these parameters, we compare the low-lying energies of the Hückel calculations to the energies

of an electron on a sphere of size equal to the fullerene radius, which are known analytically.

Hückel method

The Hückel method describes the molecular orbitals as a linear combination of atomic

orbitals which determines the energies of molecular orbitals for the π-electrons. σ-orbitals are

not considered due to the fact that most of the spectral and chemical properties are defined

by the π-electrons. This works very well for resonant molecules with delocalized π-electrons,

like the fullerenes. In this method, molecules are treated as graphs, thus every atom is a

node and the edges are the bonds. We use the adjacency matrix of the graph to define the

Hückel Hamiltonian:

Ĥ = α + βA (5)

which plays the familiar role of Ĥ in the eigenvalue equation (2). Here α, β are the Hückel

Parameters. Therefore, by using the Hückel method, the number of energy levels and their

degeneracies are obtained in terms of two parameters α and β which correspond to the

energy of a 2p electron and the interaction energy between two orbitals. It is important to

emphasize that α and β are free parameters, and never evaluated in Hückel approximation.

Their values must be obtained empirically. This method was chosen for its simplicity.

Python (direct construction)

We develop Python code which takes adjacency matrix for a given molecular graph and

solves the associated eigenvalue problem. Once the eigenvalues are obtained, the program

counts the degeneracies of the eigenvalues and finally draws the molecular orbital diagram.

For C60 the adjacency matrix was manually constructed to be input into the code. The

molecular graph is shown in Figure 2 while the spectrum is given in Figure 3.
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Figure 2: Graph of C60 obtained with
Python.

Figure 3: Molecular orbital diagram
based on the eigenvalues in units of
the parameter β of C60.

Fullerene (v.4.5)

With larger fullerenes, the program Fullerene (Version 4.5) [20] is used to to obtain the

matrices and the eigenvalues automatically. This program enables the user to create any

fullerene’s adjacency matrix as well as providing a complete data set of several features

such as the eigenvalues and the number of isomers of the particular molecule. To get the

data of bigger fullerenes, Goldberg-Coxeter (GC) transformations are applied to smaller

fullerenes. The fullerenes approached in this paper are obtained using Halma and Leapfrog

transformations of C20, which are special cases of GC transformations.

Comparison with Spherical model

In order to extract meaningful predictions from the Hückel method, one must know the

values of α and β. For calculating the HOMO-LUMO gap it is sufficient just to know the

value of β.
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Figure 4: Comparison of the molecular orbital diagrams of C60 (right) with the energy spec-

trum of an electron on a perfect sphere (left). From the requirement that the low-lying

energies match, an estimate for β may be extracted.

Although the analytic form of a free electron on an icosahedron is not explicitly known,

the spectrum of a free particle on a sphere is given by the classic result

E =
J(J + 1)

2R2
(6)

in atomic units. Here J = {0, 1, . . . } is a quantum number corresponding to total angular

momentum. At level J there is a (2J + 1)-fold degeneracy in this model. Taking R to be

the fullerene’s average radius, we get unambiguous predictions for the energy levels of the

fullerene in the spherical approximation. In agreement with the expectation of spherical

symmetry breaking, the lowest-energy states of all fullerenes considered match with the
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spectrum of this spherical model. As an example, see Figure 4. By matching the three

lowest-lying levels, we can extract an estimate for the value of β, and thus predict the

HOMO-LUMO gap (c.f. Figure 4) .

3 Results

The energy gaps for each fullerene in units of the parameter β are calculated from the

eigenvalues provided by the program Fullerene (v.4.5) as shown in Table 1. The average

β estimated value is 0.097, obtained from comparing each fullerene’s spectrum with the

spherical system of the same average radius. It can be observed that the HOMO-LUMO gap

diminishes with increasing size in fullerenes, being 0.076 atomic units (au) in C60 and 0.018

au C2160. By adding these band gaps to previous classically predicted values of ionization

potentials (In) [18], close approximations to the DFT values are obtained. These are depicted

graphically in Figure 5.
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Figure 5: Icosahedral fullerene electron detachment energies (In and the An) from DFT and

classical predictions depending on 1/Rn.

The capacitance of the different fullerenes is calculated using the ionization potentials

and the electron affinities as in Equation (1). These values are obtained from DFT, classical

predictions and classical predictions with the energy gap. These three different capacitance

relations are shown in Figure 6. We see excellent agreement between our simple calculations

and the ones obtained through DFT as shown in Figure A
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Figure 6: Capacitances depending on the fullerenes’ radius obtained from DFT values, clas-

sical predicted values and classical predicted values with the band gap.

4 Discussion

The incorporation of the HOMO-LUMO gap to the values obtained classically in a prior

project [18] show an accurate approximation of both the detachment electron energies and

capacitance obtained from DFT, especially in larger fullerenes as shown in Figure 6 and

Figure 5. These results remark the validity of what Atanasov & Ellenbogen [18] determined

in a prior paper: these systems can be decomposed into a classical electrostatic component

in series with an inherent quantum mechanical component (due to the symmetry breaking

inducing a HOMO-LUMO gap). Figure 7 gives a circuit diagram for the total capacitance of

the system, highlighting its classical and quantum component. Therefore, the expected result
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was that by taking into account the quantum contributions, the results obtained would be

very close to the DFT ones. On the other hand, these results also prove that despite Hückel

method being a simple approach compared to DFT or other computational methods such

as the Hartree-Fock method, it still provides very explicit insight into the nature of these

molecules.

Figure 7: Total capacitance expressed by the classical capacitance together with the quantum

mechanical HOMO-LUMO gap induced from symmetry breaking.

The HOMO-LUMO gap results are especially satisfying since the method we use is quite

simple compared to DFT. Due to this, these calculations could have led to large estimation

errors, yet we do not see this. The largest errors come from C60, and our approximation

only gets better for larger fullerenes. The ionization potentials, obtained by including the

band gap to the classical value, only vary 0.021 au in the worst case (C60) from the DFT

values and exactly coincide in the best case (C2160). The variation in the smaller fullerenes

is because the β that determines ∆E is most dependent on the value of R in those cases.

For those cases, there is an ambiguity in defining the average radius of the fullerene, since
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we may want to take into account the π electron cloud in that definition. The fact that our

spherical model comparison works well for large fullerenes, where ambiguity in the radius R

is less relevant, leads us to conclude that this comparison is well-justified in general.

Fortunately, although C60 is the most uncertain value, it does not substantially affect

the capacitance estimate (equation 1) since I − A is largest in that case. By contrast, for

large fullerenes I−A becomes much smaller, leading to substantial errors in the capacitance

scaling, even for relatively good estimates of I and A. The fact that we are able to so

accurately reproduce the capacitance of the fullerenes for large R is quite surprising, and

gives further evidence for the implications of our model.

Figure 6 shows the accuracy of these capacitance calculations. It can be observed that the

values corresponding to the classical predictions with the HOMO-LUMO gap incorporation

are almost the same as the DFT ones. It is important to notice that all the capacitances

are linear functions despite the extraction method used which conforms with the Lewis et

al. work [17]. The difference between them is the slope, which is more inclined in the case

of classical capacitance. The other aspect of the results that stands out is the y-intercept,

which is not zero as one may expect. This occurs because even for a hypothetical fullerene

with radius zero, π-electrons still have a defined orbital whose radius is not null.

Apart from the capacitance and ionization potential calculations, in this project, we can

see how the fullerenes’ energy spectrum varies according to their size. Graphene, which can be

considered as the fullerene with R =∞, has a continuous spectrum with vanishing HOMO-

LUMO gap. In solid-state physics this corresponds to a conductor, with no gap between

the valence and conduction bands. Therefore, the band gaps are expected to decrease with

increasing fullerene size. Figure 8 shows the molecular orbital diagram for C540. Compared

to the C60 or to other smaller fullerenes, its orbitals are closer to each other. A continuous-

looking spectrum starts to emerge for C540 which will be accentuated when increasing the size

of the fullerene. As shown in table 1, the HOMO-LUMO gaps decrease with larger fullerenes,

13



confirming this intuition.

Figure 8: Molecular orbital diagram of C540 with occupied orbitals in blue and empty orbitals

in black.

5 Future Work

In future investigations, it would be interesting to extend this project by studying fullerenes

of lower, non-icosahedral symmetry. Non-icosahedral fullerenes’ HOMO-LUMO gap is smaller,

thus they are expected to have an almost entirely classical capacitance [21]. ”Open shell”

icosahedral fullerenes, which have the formula C60n+20 such as C20 or C80, have a zero

HOMO-LUMO gap. Therefore, we expect the capacitance to be almost entirely ”classical”[16].
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Another potential future approach would be applying this method to study carbon nan-

otubes, using a classical ”conducting cylinder model” together with Hückel theory [22].

Finally, we hope to study poly(phenylene ethynylene) molecular wire capacitances, whose

scalings appear quasi-classical as well [23].

6 Conclusion

To summarize, in this project the capacitance of different icosahedral symmetric fullerenes

is approximately but accurately calculated using a simple approach based on the Hückel

method combined with previous semi-classical results. This is a notable result, since the

determination of these electron detachment energies usually requires substantial and intense

computational power. These results strongly suggest that the capacitance can be divided

into a classical component and a quantum one.

The method used especially provides accurate ionization potential data for large fullerenes.

Although the ionization potential for small fullerenes has more variation from DFT results,

it still provides a accurate capacitance value. Therefore, the capacitance line is reproduced

with high precision.
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A Appendix

Num. carbon atoms ∆En (Hückel) β ∆En (au) An (CFT) (au) In (DFT) An (c.p.) Ĩn (c.p.) Ĩn + ∆En

60 0.757 0.100 0.076 0.107 0.283 0.105 0.228 0.304

180 0.579 0.097 0.056 0.127 0.254 0.128 0.205 0.261

240 0.496 0.097 0.048 0.130 0.241 0.133 0.201 0.249

540 0.358 0.097 0.035 0.144 0.222 0.145 0.192 0.227

720 0.321 0.097 0.031 0.148 0.218 0.148 0.189 0.220

960 0.277 0.097 0.027 0.151 0.212 0.151 0.187 0.214

1500 0.226 0.097 0.022 0.155 0.205 0.155 0.184 0.206

2160 0.190 0.097 0.018 0.158 0.200 0.158 0.182 0.200

Table 1: Ionization potentials and electron affinities of carbon fullerenes from DFT [17],

classically predicted [18] and classically predicted (c.p) with the energy gap included (c.p

+∆En) all in atomic units (au).

Num. carbon atoms Rn (Bohrs) Capacitance (from DFT) Capacitance (from cp) Capacitance (c.p +∆En )

60 6.705 5.68 8.13 5.03

180 11.593 7.87 12.99 7.52

240 13.366 9.01 14.71 8.63

540 19.942 12.82 21.28 12.25

720 22.990 14.29 24.39 13.86

960 26.520 16.39 27.78 15.89

1500 33.112 20.00 34.48 19.64

2160 39.711 23.81 41.67 23.55

Table 2: Capacitances of carbon fullerenes from DFT [17], classically predicted [18] and

classically predicted (c.p) with the energy gap included (c.p +∆En) all in atomic units (au).
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