Instantons and the ADHM Construction
Lecture 1

Alex Atanasov

December 6, 2016

Abstract

We explore connections on \mathbb{R}^4 and the Yang-Mills equations arising from minimizing a quantity known as action. We study solutions to these equations possessing nonzero action, known as instantons, and demonstrate a method to construct all instantons on \mathbb{R}^4 with dimension n and topological charge k. This is the ADHM construction of Atiyah et al.

1 Motivation

In this course we have seen examples of geometrization: the association of geometric structure to an underlying algebraic structure. We’ve seen that categorification of $\mathfrak{sl}_q(2, \mathbb{C})$ gives rise to cohomology rings of Grassmanians. In a similar vein, more general affine Lie algebras $\hat{\mathfrak{g}}$ give rise to geometric spaces that can be understood as moduli spaces of instantons on asymptotically-locally-euclidean (ALE) spaces \mathbb{C}^2/Γ, in one-to-one correspondence with the extended affine Dynkin diagrams.

We give an introduction to instanton construction first in the simple case of $\mathbb{C}^2 \cong \mathbb{R}^4$. Even in this simple case, we will see how this theory is deeply connected to affine Lie algebras, Hilbert schemes, and quiver varieties.
2 Yang Mills Instantons on \mathbb{R}^4

2.1 Connection and Curvature Forms

Definition 2.1. A Hermitian vector bundle $\pi : E \to M$ over a base space M is a complex vector bundle over M equipped with a Hermitian inner product on each fiber.

Yang Mills theory on M concerns itself with the metric-compatible connections A on E.

Definition 2.2 (Connection on a Vector Bundle). A connection A on a vector bundle $\pi : E \to M$ of rank n is a $\mathfrak{gl}(n)$-valued 1-form

For a Hermitian bundle, we restrict to $\mathfrak{u}(n)$, to work with only metric-compatible connections. Each such connection $A \in \mathcal{A}$ is a $\mathfrak{u}(n)$-valued 1-form acting on E by ρ.

Definition 2.3 (Covariant Exterior Derivative). For a given connection $A \in \Omega^1(M, \mathfrak{u}(n))$, we obtain a corresponding differential operator on M:

$$d_A := d + \rho(A)$$ (1)

Observation 2.4. In coordinate language, we can write:

$$(d_A)_\mu = \partial_\mu + \rho(A_\mu)$$ (2)

We can then define the curvature 2-form by having this derivative act on its own connection 1-form

Definition 2.5 (Curvature/Field-Strength 2-form).

$$F := d_A A = dA + A \wedge A$$

$$= dA + \frac{1}{2}[A, A]$$ (3)

Observation 2.6. In coordinate language, we can write:

$$F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu + [A_\mu, A_\nu]$$ (4)

s.t. $F = \frac{1}{2} F_{\mu\nu} dx^\mu \wedge dx^\nu$ (5)

We conclude with an identity that can be checked by direct computation

Proposition 2.7 (Bianchi Identity).

$$d_A F = 0$$ (6)
2.2 The Action

For our purposes, $M = \mathbb{R}^4$ will be the manifold in question. In particular \mathbb{R}^4 has Riemannian structure, so we are given the Hodge-star operator

$$\star : \Omega^k \to \Omega^{n-k}.$$

We define the action, from which we will obtain all information about the dynamics, by:

$$S_E[A] = -\int_M \text{Tr}(F \wedge \star F) \quad (7)$$

Proposition 2.8. Tr$(F \wedge \star F)$ is globally-defined and gauge invariant

Proof. This follows directly from the cyclic properties of the trace, and the transformation laws on F making it transform under the adjoint representation.

We want to find A so that $S_E[A]$ is a minimum. To do this, we use standard calculus of variations. Consider a local perturbation $A + t\alpha$

$$F[A + t\alpha] = d(A + t\alpha) + A \wedge A + t[A, \alpha] + O(t^2)$$

$$= F[A] + t(\alpha + [A, \alpha]) + O(t^2)$$

$$= F[A] + dA\alpha + O(t^2) \quad (8)$$

so that to order t:

$$||F[A + t\alpha]||^2 = ||F[A + t\alpha]||^2 + 2t(F[A], dA\alpha)$$

$$\Rightarrow (F[A], dA\alpha) = 0 \forall \alpha \quad (9)$$

By taking adjoints, this gives:

$$\Rightarrow \star dA \star F[A] = 0$$

$$\Rightarrow dA \star F = 0 \quad (10)$$

This, together with the tautological Bianchi identity: $d_A F = 0$ form the Yang-Mills equations. These equations are very difficult to solve in all but abelian gauges, where they become linear.

2.3 Instantons and Topological Charge

Proposition 2.9. Let dim $M = 4$. Then $\int_M \text{Tr}(F \wedge F)$ is independent of changes in A.

Proof. Following the same variational procedure will give us $d_A F$, which is zero always, independent of any condition on A.

We define the topological charge k of the theory by

$$k := -\frac{1}{8\pi^2} \int_M \text{Tr}(F \wedge F) \quad (11)$$

Proposition 2.10. When $M = S^4$, we have that k is an integer.
Proof. The proof lies in simple ideas from Chern classes and classifying bundles over S^4. It establishes a one-to-one correspondence between the global topology type of the bundle E over S^4 and the topological charge.

Now note that on \mathbb{R}^4, we have $\star \star = 1$. This means that \star has eigenvalues ± 1 and so $\Omega^2(U, g)$ splits as a direct sum of two orthogonal spaces:

$$\Omega^2(\mathbb{R}^2, u(n)) = \Omega_+^2 \oplus \Omega_-^2$$

called self-dual and anti-self-dual spaces respectively.

We can “symmetrize” any form to become a sum of a self-dual and an anti-self dual one. In particular, if we write:

$$F = F_+ + F_-$$

then we have

$$-8\pi^2 k = \int_M \text{Tr}[(F_+ + F_-) \wedge (F_+ + F_-)]d\text{Vol}$$

$$= \int_M \text{Tr}[(F_+) \wedge (F_+)]d\text{Vol} + \int_M \text{Tr}[(F_-) \wedge (F_-)]d\text{Vol}$$

$$= \int_M ||F_+||^2 d\text{Vol} - \int_M ||F_-||^2 d\text{Vol}$$

Note that the absolute value of this gives:

$$8\pi^2 k \leq \int_M ||F||^2 = |S_A[F]|$$

Proposition 2.11. The action is bounded below by this topological charge and is in fact equal to it exactly when one of $F_+ = 0$ or $F_- = 0$.

We call a solution an **instanton** of the theory. Its action is equal to the topological charge, and in fact we call this the **instanton number** when appropriate. We are interested in the space of instantons modulo gauge equivalence.

Definition 2.12. The gauge group \mathcal{G} of all metric-compatible transformation on E, restricts to $\text{SU}(n)$ at each point. Two connections A_1, A_2 are Gauge equivalent if they differ by an element in \mathcal{G}. We are interested in the space of connections modulo gauge.

Instantons on \mathbb{R}^4 must have that F is either self-dual or anti-self-dual. In the latter case:

$$\star F = -\star F$$

This equation is much simpler to solve than the equation of motion $d_A \star F = 0$. The anti-self-duality (ASD) equations can be written out explicitly:

$$F_{12} + F_{34} = 0$$

$$F_{14} + F_{23} = 0$$

$$F_{13} + F_{42} = 0$$

(17)
This can also be written in terms of commutators of the covariant derivatives. If we denote
\((d_A)_\mu\) simply by \(D_\mu\) then \(F_{\mu\nu} = (d_A)_\mu(d_A)_\nu = [D_\mu, D_\nu]\).

\[
[D_1, D_2] + [D_3, D_4] = 0 \\
[D_1, D_4] + [D_2, D_3] = 0 \\
[D_1, D_3] + [D_4, D_2] = 0
\]
(18)

Proposition 2.13. There are no instantons on Minkowski space \(\mathbb{R}^{3,1}\).

Proof. \(\star \star = -1\) on Minkowski space, so \(\star\) has eigenvalues \(\pm i\), meaning the duality equations would require \(\star F = \pm i F\), but \(F \in \Omega^2(\mathbb{R}^4, u(n))\) is a real object. \(\square\)

Proposition 2.14. For all connections on a given vector bundle \(E\), the instanton number is an invariant.

Proof. This follows since for instantons \(S_A = 8\pi k\) is independent of the connection. \(\square\)

Corollary 2.15. There are no instantons when \(G\) is abelian.

Proof. \(F = dA \Rightarrow ||F|| = (\star dA, dA) = (\delta \star A, dA) = (\star A, d^2A) = 0\) \(\square\)

We then have two invariants to note: \(n\) and \(k\). We will be especially interested in the moduli space of all instantons for specific \(n\) and \(k\) (modulo gauge). From now on, we will focus specifically on anti-self-dual (ASD) instantons.

\[\mathcal{M}_{\text{ASD}}(n,k)\]

Self-dual instantons can be constructed in a straightforward one-to-one manner from the ASD instantons.

There is one subtlety: For \(k\) to be finite, we need \(F\) to vanish sufficiently quickly. This gives a bound for \(|F| = |d_A A(x)| = O(|x|^{-4})\) for large \(x\). This further gives a constraint on the gauge group \(\mathcal{G}\) as \(x \to \infty\) to have locally trivial structure. Instantons with this condition on their behaviour and gauge group are called **framed** instantons.

We say that in a neighborhood of infinity of \(S^4\), the gauge group element must give a section of the bundle \(E\) that has a local trivialization \(\Phi : E_\infty \to \mathbb{C}^n\). We denote the moduli space of framed instantons by

\[\mathcal{M}_{\text{ASD}}^{fr}(n,k)\]
3 The ADHM Construction

3.1 The Data

Let \(x_1, x_2, x_3, x_4 \) parameterize a \(\mathbb{R}^4 \), and write this as \(\mathbb{C}^2 \) using \(z_1 = x_2 + ix_1, z_2 = x_4 + ix_3 \). We can then write all the \((d_A)_\mu \) (from now on just \(D_\mu \)). Moreover in terms of the complex coordinates, we get

\[
\begin{align*}
D_1 &= \frac{1}{2}(D_2 - iD_1) \\
D_2 &= \frac{1}{2}(D_4 - iD_3)
\end{align*}
\]

We can express anti-self duality of \(F_{\mu\nu} \) in terms of these \(D_\mu \) through two equations:

\[
\begin{align*}
[D_1, D_2] &= 0 \\
[D_1, D_1^\dagger] + [D_2, D_2^\dagger] &= 0
\end{align*}
\]

(20)

The idea behind ADHM is to convert these \(D_i \) to matrices \(B_i \) in a method akin to taking “Fourier transforms”, and adding source terms depending on \(k \).

Definition 3.1 (ADHM Data). Let \(U \) be a 4-dimensional space with complex structure. An ADHM System on \(U \) is a set of linear data:

1. Vector spaces \(V, W \) over \(\mathbb{C} \) of dimensions \(k, n \) respectively.
2. Complex \(k \times k \) matrices \(B_1, B_2 \), a \(k \times n \) matrix \(I \), and an \(n \times k \) matrix \(J \).

We can see this diagrammatically by the following doubled, framed quiver:

\[
\begin{array}{c}
W \\
\downarrow J \\
\downarrow I \\
\downarrow B_2 \\
V \\
\uparrow B_1
\end{array}
\]

Definition 3.2 (ADHM System). A set of ADHM Data is an ADHM system if it satisfies the following constraints:

1. The ADHM equations:

\[
\begin{align*}
[B_1, B_2] + IJ &= 0 \\
[B_1, B_1^\dagger] + [B_2, B_2^\dagger] + II^\dagger - J^\dagger J &= 0
\end{align*}
\]

(21)

These quantities are called real and complex moment maps, respectively.
2. For any two \(x, y \in \mathbb{C}^2 \) with \(x = (z_1, z_2), y = (w_1, w_2) \), the map:
\[
\alpha_{x,y} = \begin{pmatrix}
w_2 J - w_1 I^\dagger \\
-w_2 B_1 - w_1 B_2^\dagger - z_1 \\
w_2 B_2 - w_1 B_1^\dagger + z_2
\end{pmatrix}
\] (22)
is injective from \(V \) to \(W \oplus (V \otimes U) \) while
\[
\beta_{x,y} = \left(w_2 I + w_1 J^\dagger \quad w_2 B_2 - w_1 B_1^\dagger + z_2 \quad w_2 B_1 + w_1 B_2^\dagger + z_1 \right)
\] (23)
is surjective from \(W \oplus (V \otimes \mathbb{C}^2) \) to \(V \).

It’s worth noting that \(W \oplus (V \otimes \mathbb{C}^2) \cong W \oplus V \oplus V \).

Lemma 3.3. If \((B_1, B_2, I, J)\) satisfy the above conditions, then for \(g \in U(k) \), we get
\[(gB_1g^{-1}, gB_2g^{-1}, gI, Jg^{-1})\]
also satisfy the above conditions.

Thus we care about solutions to these equations modulo \(U(V) \).

Proof. It’s a quick check through direct algebra that the equations are preserved. \qed

Proposition 3.4. The ADHM equations are satisfied iff
\[
V \xrightarrow{\alpha_{x,y}} W \oplus (V \otimes \mathbb{C}^2) \xrightarrow{\beta_{x,y}} V
\] (25)
is a complex

Proof. We need both \(\beta \alpha = 0 \) as well as surjectivity of \(\beta \) and injectivity of \(\alpha \). The actual equation \(\beta \alpha = 0 \) reduces exactly to a quadratic polynomial in the \(w_1, w_2 \) with the two ASD equations emerging as coefficients. \qed

Observation 3.5. This can be viewed as a complex on the trivial vector bundles \(V, W \oplus V \oplus V \) over \(\mathbb{C}^2 \)
\[
V \xrightarrow{\alpha} W \oplus V \oplus V \xrightarrow{\beta} V
\]

Now because we have Hermitian structure on each of \(W, V, \) and \(U \), we have hermitian structure on the space we are interested. We can thus define adjoints \(\alpha^\dagger, \beta^\dagger \). In particular the Hermitian structure gives us canonical projection operators \(P_\beta \) onto \(\ker \beta \) and \(P_\alpha \) (im \(\alpha \))\(^\dagger = \ker \alpha \) so that \(P_x = P_{\beta,x} P_{\alpha,x} \) is then a projection onto \(\text{im} \alpha^\dagger \cap \ker \beta \cong \ker \beta / \text{im} \alpha \).

The above proposition also implies
\[
\Delta^\dagger_{x,y} := \begin{pmatrix}
\beta_{x,y}^\dagger \\
\alpha_{x,y}^\dagger
\end{pmatrix} : W \oplus (V \otimes \mathbb{C}^2) \to V \times V
\] (26)
is a surjection. Explicitly:
\[
\Delta^\dagger_{x,y} = \begin{pmatrix}
w_2 I + w_1 J^\dagger & w_2 B_2 - w_1 B_1^\dagger + z_2 & w_2 B_1 + w_1 B_2^\dagger + z_1 \\
-w_1 I + w_2 J^\dagger & -w_1 B_2 - w_2 B_1^\dagger - \bar{z}_1 & -w_1 B_1 + w_2 B_2 + \bar{z}_2
\end{pmatrix}
\] (27)
Moreover, there is an adjoint operator to Δ^\dagger on these bundles:

$$\Delta := (\beta^\dagger \alpha) = \begin{pmatrix} \bar{w}_2 I^\dagger + \bar{w}_1 J & w_2 J - w_1 I^\dagger \\ \bar{w}_2 B_2^\dagger - \bar{w}_1 B_1 + \bar{z}_2 & -w_2 B_1 - w_1 B_2^\dagger - z_1 \\ \bar{w}_2 B_1^\dagger + \bar{w}_1 B_2 + \bar{z}_1 & w_2 B_2 - w_1 B_1^\dagger + z_2 \end{pmatrix}$$

(28)

More compactly, if we write

$$a = \begin{pmatrix} I^\dagger & J \\ B_1^\dagger & -B_1 \\ B_2^\dagger & B_2 \end{pmatrix}, \quad b = \begin{pmatrix} 0 & 0 \\ I_k & 0 \\ 0 & I_k \end{pmatrix}$$

(29)

then

$$\Delta = aw + bz$$

(30)

when we write w and z as quaternions in this space by associating to a complex pair $(q_1, q_2) = q \in \mathbb{C}^2$ the quaternionic operator:

$$q \leftrightarrow \begin{pmatrix} \bar{q}_2 & -q_1 \\ \bar{q}_1 & q_2 \end{pmatrix}$$

(31)

for any $q_1, q_2 \in \mathbb{C}$. This structure is compatible with the operator R:

Proposition 3.6. $\Delta^\dagger_{xq,yq} = \bar{q}\Delta^\dagger_{x,y}$

Proof. We have that

$$\Delta^\dagger_{x,y} = (awq + bsz)^\dagger$$

$$= q^\dagger (aw + bz)$$

$$= q^\dagger \Delta^\dagger$$

(32)

Define the bundle vector E at (x, y) as the vector space corresponding to the kernel of the Δ^\dagger map at (x, y).

Corollary 3.7. $E_{x,y} = E_{xq,yq}$, meaning x, y are projective coordinates over the quaternions.

The above makes E a bundle on the projective space $\mathbb{P}^1(\mathbb{H}) \cong S^4$. On this compact space, we can calculate topological charge.

Because of this symmetry, we can specialize to the case $y = 1$, i.e. $(w_1, w_2) = (0, 1)$ in the ADHM equations. This simplifies the operator Δ^\dagger to

$$\Delta^\dagger = \begin{pmatrix} I & B_2 + \bar{z}_2 & B_1 + \bar{z}_1 \\ J^\dagger & -B_1^\dagger - \bar{z}_1 & B_2^\dagger + \bar{z}_2 \end{pmatrix}$$

(33)

Solutions to ADHM correspond to Ψ such that

$$\Delta^\dagger \Psi = 0.$$
It is easy to see that
\[\Delta^\dagger \Delta = \begin{pmatrix} f^{-1} & 0 \\ 0 & f^{-1} \end{pmatrix} \] (35)
for some Hermitian \(f \). We can also construct an orthonormal matrix \(M \) whose columns span \(\ker \Delta^\dagger \). Clearly then:
\[\Delta^\dagger M = 0. \]

The set of solutions \(\Psi \) to \(\Delta^\dagger \Psi = 0 \) gives rise to \(M \) and gives a connection:
\[M^\dagger dM. \]

We can then define the projection operator:
\[Q := \Delta f \Delta^\dagger \] (36)
as well as
\[P := MM^\dagger \] (37)

Lemma 3.8. \(P + Q = 1 \). That is, \(P \) projects into the null space of \(\Delta^\dagger \).

Proposition 3.9. This gives rise to a connection \(A = M^\dagger dM \)

Proof. Take \(s \) a section so that \(Ms \) gives a section on \(E = \ker \Delta^\dagger \), then
\[Mds + MAs = d_A(Ms) \]
\[= Pd(Ms) \]
\[= MM^\dagger d(Ms) \]
\[= M(ds + (M^\dagger dM)s) \]
giving our result. \(\square \)

Proposition 3.10. \(A \in \mathfrak{su}(n) \).

Proof. \(A^\dagger = (dM)^\dagger M = -M^\dagger dM \) because of normalization: \(M^\dagger M = 1 \). \(\square \)

Proposition 3.11. \(A \) is anti-self-dual.

Proof.
\[F_{\mu\nu} = \partial_{[\mu} A_{\nu]} + A_{[\mu} A_{\nu]} \]
\[= \partial_{[\mu}(M^\dagger \partial_{\nu]} M) + (M^\dagger \partial_{\nu}[M](M^\dagger \partial_{\nu]} M) \]
\[= (\partial_{[\mu} M^\dagger)(\partial_{\nu]} M) + (M^\dagger \partial_{\nu}[M](M^\dagger \partial_{\nu]} M) \]
\[= (\partial_{[\mu} M^\dagger)(\partial_{\nu]} M) + (\partial_{[\mu} M^\dagger M)(M^\dagger \partial_{\nu]} M) \]
\[= (\partial_{[\mu} M^\dagger)(1 - P)(\partial_{\nu]} M) \]
\[= (\partial_{[\mu} M^\dagger)Q(\partial_{\nu]} M) \]
\[= (\partial_{[\mu} M^\dagger)\Delta f \Delta^\dagger(\partial_{\nu]} M) \]
\[= M^\dagger(\partial_{[\mu} \Delta) f(\partial_{\nu]} \Delta^\dagger) M \]
The term involving the derivatives of these Δ operators

\[(\partial_\mu \Delta)f(\partial_\nu \Delta^\dagger)\] (40)

can be reduced to the action of sigma matrices \(-i\sigma_\mu\) on \(f\):

\[\partial_\mu \Delta = -i\sigma_\mu\]
\[\Rightarrow (\partial_\mu \Delta)f(\partial_\nu \Delta^\dagger) = (-i\sigma_\mu \otimes I_k)(I_2 \otimes f)(-i\sigma_\nu^\dagger \otimes I_k)\] (41)

\[-2i\sigma_{\mu\nu} \otimes f\]

And we know \(\star \sigma_{\mu\nu} = -\sigma_{\mu\nu}\) This illusatrates how the underlying quaternionic structure gives rise to rise to ASD solutions.

Proposition 3.12. The topological charge of \(E\) when considered as a bundle over \(S^4\) is \(-k\)

Proof. (Sketch) Note that \(W \oplus (V \otimes U) \cong \mathbb{C}^{n+2k} = E \oplus E^\perp\). Since \(E\) has dimension \(n\) this leaves a complement of complex dimension \(2k\). This can be identified as \(k\) one-dimensional copies of the quaternions, so that \(W \oplus (V \otimes U)\) decomposes as a direct sum

\[E \oplus \mathbb{H}^\oplus k\] (42)

so corresponds to \(k\) quaternion line bundles over \(S^4\). In fact this turns out to be the **tautological line bundle** \(\Sigma\).

Now from simple Chern theory, we know:

\[0 = c_2(\mathbb{C}^{n+2k}) = c_2(E) + kc_2(\Sigma).\] (43)

But the second chern number of a quaternionic tautological bundle is 1 (analogous to how the first chern number of a complex tautological bundle is 1). This gives \(c_2(E) = -k\).

Corollary 3.13. \(A\) is a framed connection, and the topological charge is \(-k\).

Proof. We know \(A\) over \(\mathbb{R}^4\) extends to a connection over \(S^4 = \mathbb{P}^1(\mathbb{H})\).

References

