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1 Introduction

This set of lecture notes will constitute both a general literature summary on
the topic and an end-of-term paper for Spectral Geometry.

For particular modular forms g that are eigenfunctions of the Hecke oper-
ators (called cuspidal eigenforms of weight 1 and level N) we can relate the
coefficients an in the Fourier series g(τ) =

∑
n anq

n to the characteristic poly-
nomials of representations of certain Galois groups of finite extensions over
Q.

We will discuss Artin’s Conjecture on the holomorphy of L functions. This
has far reaching consequences about the correspondence between odd Galois
representations giving cuspidal eigenforms of weight 1 and even representations
giving Maass forms of eigenvalue 1/4 of weight 0.

2 Rings of Integers

Let Q be our ground field and consider a Galois extension K/Q of degree n.
Let G be the corresponding Galois group. The ring of integers OK of K is the
integral closure of Z in K (the algebraic integers in K). This is a Dedekind
domain, and so all nontrivial prime ideals are maximal. Moreover, every ideal
can be factored into a product of prime ideals.

Example 1. In Z[i], we have (2) = (1 + i)(1 − i). Note how although 2 was
prime in Z, it is no longer prime in our ring of integers OK = Z[i].

So which rational primes have repeated factors when they split in OK?
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(p) = πe11 . . . πerr

Then we say p is ramified in K if ∃i : ei > 1.

Proposition 1. The ramified primes are precisely those that divide the relative
discriminant (det(σibj))

2 where σi, bj are the Galois automorphisms of K and
bj are the elements of the integral basis for K.

Corollary 1. There are only finitely many ramified primes.

Let’s say p is unramified. If π|p then all σiπ|p. In fact G acts transitively
on the primes π dividing p. For a given prime ideal π, the set of all σ ∈ G
that stabilize this ideal is called the decomposition group Gπ = StabG(π). By
transitivity, for all the π|p these groups are all conjugate in G. We see from
definition that Gπ descends to act on the quotient field OK/π.

Since (p) ⊆ (π), we get that (p) is in the kernel of the quotient. We
therefore have that the integers map to either 0 or Z/pZ and since (π) 6= OK ,
the integers map to Z/pZ. OK/π is therefore some finite extension (say of
degree f) over Fp. Simply by counting dimension, the degree of the extension
(OK/β)/(Z/pZ) is f = n/r.

The Galois group of this finite field extension is cyclic of order f .
The automorphisms are generated by some element x 7→ xp, and we denote

this corresponding element in Gπ by Frobπ. So Frobπ(α) = αp mod π.

Proposition 2. The elements Frobπ are conjugate in G for π|p. We can thus
define Frobp as the conjugacy class of Frobπ for π|p.

Proposition 3. For p unramified, Frobp = 1 iff p is split in K. If K is the
splitting field of f , this corresponds to f splitting completely when reduced mod
p.

I didn’t clarify what it means for unramified p to split completely
in lecture: A prime splits completely if (p) = π1 . . . πn and OK/πi = Z/pZ
for each i. This is consistent with Frobp = 1 as there are no nontrivial auto-
morphisms on this field. Otherwise, we’d clearly have nontrivial elements in
Frobπ for some π, and therefore Frobp is nontrivial.

Example 2. In Z[i], the rational prime 3 remains prime while 2 = (1+i)(1−i)
is split. The Galois group of Q(i)/Q is Z2, and we have Frob3 = 〈x〉 while
Frob2 = 1. This can be checked. For p = 3:

(a+ bi)3 ≡ a3 − ib3 ≡ a− ib ≡ a+ ib mod 3 (1)
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and a, b ∈ Z. This means Frob3 = −1. On the other hand we can check:

(a+ bi)5 ≡ a5 + b5i = a+ bi mod (2 + i) (2)

for any a, b, so Frob5 = 1

Example 3. Consider Q(i, 4
√

2)/Q, this has Galois group D8 and thus admits
a two-dimension representation into GL2(C).

r 7→
(

0 −1
1 0

)
, s 7→

(
1 0
0 −1

)
Now for the unramified rational primes, we have a characterization of con-

jugacy classes:

Frobpis the conjugacy class of



1 if p = a2 + 64b2

r2 if p = a2 + 16b2, b odd

rs if p ≡ 3 mod 8

r if p ≡ 5 mod 8

s if p ≡ 7 mod 8

The trace of the representation is nonzero for 1, r2 where it is 2 and −2
respectively.

We will connect this to a modular form in section 4.

3 Modularity for GL1 and L functions

If K/Q is a quadratic extension, we can write K = Q(
√
d) for some d. Whether

d is positive or negative will make a difference in the overall treatment. We
know that the Legendre symbol may be viewed as a one-dimensional character
into GL1(C) from which we can form the associated Dirichlet Zeta (or Hecke
L-function):

L(s, χ) =
∞∑
n=1

χ(n)

ns
=
∏
p

1

1− χ(p)p−s

Artin generalized these one-dimensional representations to GL2, and de-
fined the Artin L-function for more general representations:

L(s, ρ) =
∏
p

1

det(I − p−sρ(Frobp))
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The representations for Galois groups of quadratic fields into C× can be
induced to give the two-dimensional dihedral representations discussed in the
next section. Hecke’s use of a quotient of Z[i] to reproduce the coefficients
given from the Galois representation for D8 play on these ideas of “inducing
from C2 to D2n”. This is the reason for why the Dihedral representations are
best understood among the finite subgroups of GL2(C).

As for the Artin L-function, we have the following conjecture:

Conjecture 1 (Artin). For a nontrivial representation ρ, L(s, ρ) is holomor-
phic on the whole complex plane.

This is known for when the representation is 1-dimensional, for the Hecke/
Dirichlet L-functions. It is also known for representations induced from one
dimensional representations (so dihedral).

Why does this matter? The holomorphy of L(s, ρ) combined with certain
other conditions will guarantee that the corresponding modular form

∑
n anq

n

has the right transformation properties and is an eigenform.
Worth Noting : Brauer’s theorem on induced characters (from representa-

tion theory, c.f. Serre’s “Linear Representations of Finite Groups”) shows that
any Artin L-function can be expressed as a ratio of Hecke L-functions, so any
L(s, ρ) is automatically meromorphic in the complex plane for nontrivial ρ.

4 Modular Forms and Galois Representations

Our familar theta function satisfies:

θ(2τ)2 =
∑
a,b∈Z

qa
2+b2 (3)

We’ll now see a specific example of a more general construction of modular
forms involving the rings of integers in quadratic extensions. For a given
quadratic extension’s ring of integers, say Z[i], pick a nonzero element α ∈ Z[i].
On the quotient Z[i]/(α) define the character:

χ : (Z[i]/(α))× → C× (4)

Then extend χ to Z[i] by letting it be 0 for elements sharing a factor with α.
In this way, we can extend χ to a multiplicative function on Z[i].
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Proposition 4 (Hecke). Under the above construction

θχ(τ) :=
1

4

∑
a,b∈Z

χ(a+ bi)qa
2+b2 (5)

is a modular form of weight 1 and level 4|α|2. If χ is not trivial, then we get
a cusp form.

Note χ(i) must have order dividing 4. In fact, since (i) = Z[i], so we can
act by the four powers of i on (a + bi) to produce 4 different elements all
with the same value for a2 + b2. If χ(i) 6= 1 we’d get cancellation in the sum.
Therefore it is in fact necessary that χ(i) = 1.

Example 4. Let α = 8 so then the finite abelian group Z[i]/(8Z[i])× has
generators 3, 5, i, 1 + 2i (orders 2, 2, 4, 4). Let χ map the first three to 1 and
the last one to i. Then θχ is a modular form of level 256. By direct calculation
and casework, we get that the pth Fourier coefficients of this modular form are
precisely

ap = Tr(ρ(Frobp)) (6)

Where ρ was the dihedral representation from example 3. This is a hint at a
deep relationship between Galois represenatioons and modular forms.

More generally, we can work towards making a broader statement between
Hecke eigenforms . Firstly, if we have g is an eigenform (of the Hecke operators)
of weight k and level N and there is a Dirichlet Character χ : (Z/NZ)× → C×
so that we get the following “twisted” expression:

g(γτ) = χ(d)(cτ + d)kg(τ),∀γ ∈ Γ0(N) (7)

We say χ is the character of g (or nebentypus if you want to be really
fancy).

Proposition 5. If g(τ) above is a Hecke eigenform then we can write an
associated Artin L-function from the coefficients.

L(g, s) =
∏

p unramified

1

1− app−s + χ(p)pk−2s

∏
p ramified

. . . (8)

This corresponds to a type of Mellin transform between L and g.
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We want to see if this is in fact an Artin L-function for some representation
of a finite Galois group.

So from the other side, let G = Gal(K/Q) admit a representation ρ : G→
GL2(C). Since the characteristic polynomial p(t) is a class function, we get

det(I − ρ(Frobp)p
−s) (9)

Is the characteristic polynomial of the conjugacy class Frobp evaluated at t =
p−s. In a manner similar to the product form of the Riemann zeta:

L′(s, ρ) =
∏
p

1

det(I − ρ(Frobp)p−s)
:=
∑
n

λρ(n)

ns
(10)

where special care is taken for the finite few p that are ramified.
Now we get to the critical result by Deligne and Serre (written as in We-

instein), showing that every Hecke eigenform comes from a 2D (odd) Galois
representation.

(To make this clear, from each appropriate eigenform, we can
get a Galois representation, not the other way around. A form of a
converse to this shall follow the theorem.)

Theorem 1 (Deligne & Serre). Let g(τ) be as above: weight k = 1, level N ,
with corresponding character χ : (Z/NZ)× → C×.

Then there exists an odd, irreducible Galois representation of some finite
extension K/Q so that for every ` coprime to N ,

ρg : Gal(Q/Q)→ GL2(C)

is unramified at ` and the characteristic polynomial of ρg(Frobp) can be
written x2 − ap(g)x+ χ(p).

(There are some details about the finite points of ramificaiton)

For higher weight Hecke eigenforms forms, we can also form such represen-
tations, but they are now p-adic.

Theorem 2 (Deligne & Serre, p-adic). For a number field F and a prime p
of F , let Fp dene completion with respect to the p-adic metric.

Let g(τ) be as above: weight k ≥ 2, level N , with corresponding character
χ : (Z/NZ)× → C×.

For all primes p in F , there exists an odd, irreducible Galois representation
of some finite extension K/Q so that for every ` coprime to N and p,

ρg,p : Gal(Q/Q)→ GL2(Fp)

is unramified at ` and the characteristic polynomial of ρg(Frobp) can be
written x2 − ap(g)x+ χ(p).
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This second theorem can be used to associate p-adic representations to
eigenforms such as the modular discriminant ∆.

4.1 The Case of A5: An Icosahedral Eigenform

Although A5 does not sit inside GL2(C), an extension of it by C4, Ã5, does. We
know for a weight one eigenform we have some odd irreducible Galois (Artin)
representation (and therefore some finite subgroup of GL2(C)) corresponding
to it. In the other direction, do we have a form for Ã5?. In fact, yes [Buhler].
Take

p(x) = x5 + 10x3 − 10x2 + 35x− 18.

This has Galois group A5. We can make a projective representation of A5 in
PGL2(C). From this, we then make an appropriate extension of A5 so that the
non-projective representation in GL2(C) has image isomorphic to Ã5. That
is, we let K, the splitting field of p be the field fixed by the kernel of the
representation to PGL2, and let an additional extension of K be permuted by
the action of C4 to form Ã5 as the total Galois group.

From studying Frobp for different p and using the fact that an are multi-
plicative, we obtain a list of coefficients: a` so that∑

`

a`q
` = q − iq3 − iφq7 − q9 + φq13 + i(1− φ)q19 − φq21 + · · · = g(q)

The multiplicative structure shows itself in the coefficients above.
It can be shown [Buhler] that this is a modular eigenform of weight 1 and

level N = 800. It was a difficult thing to prove that such a set of coefficients
arising from an icosahedral representation has modular character.

Worth noting: an unramified prime splits iff Frobp = 1 iff the discriminant
of the characteristic polynomial of ρFrobp is zero iff a2p = 4χ(p).

So Serre and Deligne’s theorem proves that given a cuspidal eigenform of
weight 1 and level N , there is some Galois representation into GL2(C) that
gives rise to it. What about the converse? Does every possible irreducible
representation in GL2(C) have some Hecke eigenform for it? (That is, does
every finite subgroup of GL2(C))

Question 1 (Solved). Which 2D Galois irreducible representations are asso-
ciated with cuspidal modular eigenforms (Hecke eigenforms)?

For the case of the characteristic zero field C this is just casework: Dihedral,
Tetrahedral, Octahedral, and Icosahedral. All of these have been proven. The
last case was much harder than the others because A5 is not solvable.
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5 The Maass Forms

We now concern ourselves with the second part of Artin’s conjecture. Maass
forms of weight zero and eigenvalue 1/4.

Selberg’s Trace formula showed that there are an abundance of Maass
eigenforms on X(N) (Note, in class I said an abundance were shown
to exist near eigenvalue 1/4, but this isn’t necessarily true). It’s also
the way that Maass forms were shown to exist on X(1) = Γ\H. The trace
formula provides a “Weyl-like” law for counting the number that appear.

Boo has shown (recently) that if Artin’s conjecture holds and L(s, ρ) is
entire on the complex plane, then the associated function

φ(z) =
∞∑
n=1

λp(n)y1/2K0(2πny) cos(2πnx) (11)

is a Maass form for X(N). Note K0 is the zeroth Bessel function. The L
function is related to the Maass form by a variant of the Mellin transform.

In general:

ψ =
∞∑
n=1

a(n)y1/2Kit(2πny) cos(2πnx) (12)

is easily seen to satisfy −∇2ψ = (1
4

+ t2)ψ, but is not usually Γ(N) invariant.

Question 2 (Not solved). Do all Maass forms of weight 0 and eigenvalue 1/4
have coefficients corresponding to some even Galois representation? Which
possible types of even two dimensional irreps give rise to these Maass forms.

So Artin’s conjecture would imply that even Galois representations would
give rise to Maass forms. There has been less progress on figuring out which
of the possible even Galois representations give rise to Maass forms. In par-
ticular, we do not know if the icosahedral case Ã5 appears as a Maass form
(the difficulty is due in part to the non-solvability of A5). The dihedral case
holds because Artin’s conjecture is true for 2D representations induced from
1-dimensional ones. The tetrahedral and octahedral cases have also been re-
cently proved to have Maass forms of that type. The proof for these cases
heavily uses spectral theory and appeals to the trace formula. The icosahedral
case remains an open and challenging problem: a part of Artin’s conjecture
that has still not been tackled.

Also worth special attention is that the theorem of Deligne and Serre for
weight 1 Hecke eigenforms does not have an analogue to Maass forms. That
is: Given a Maass form, we do not know if we can construct a corresponding
rational field extension with Galois group that allows a 2D representation
reproducing the form’s Fourier coefficients. It is widely believed to be true.
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6 Eigenvalues away from 1/4

Question 3 (Likely No). Do the Maass forms that do not have eigenvalue 1/4
have interesting properties in number theory?

For eigenvalues away from 1/4, there are no known links between those
Maass forms and Galois theory. If we were to write down a Maass form as in
equation (12), with t 6= 0, then its Laplacian eigenvalue would be away from
1/4. It is widely believed that the eigenvalues of the Hecke operators on Maass
forms of eigenvalue > 1/4 are trascendental.

Sarnak has shown this for the special case of when the coefficeients arise
from a Dihedral representation. That is, if we let a(n) in Equation (12) arise
from dihedral Galois representations but let t 6= 0, then the Hecke eigenvalues
are irrational for all operators. This is in contrast to the case when t = 0 at
1/4, where the Hecke eigenvalues are always algebraic.

Little else has been shown, but by numerical computations (Booker et al)
show that the Hecke eigenvalues of general Maass forms away from 1/4 are
not roots of polynomials of degree ≤ 10 with reasonably sized coefficients.

7 Summary

Hecke eigenforms of weight 1 with a character twist have coefficients stem-
ming from Galois reprsentations in GL2(C), as has been shown by Serre and
Deligne. A corresponding statement for Hecke eigenforms of weight 0 has not
been proven as of yet. Every one of the possible finite subgroups of GL2(C)
(corresponding to dihedral D2n, tetrahedral A4, octahedral S4, icosahedral A5

in PGL2) has been shown to have corresponding Hecke eigenforms.
It has been shown that the dihedral, tetrahedral, and octahedral cases of

represenations give rise to Maass forms, but the existence of the Icosahedral
case has evaded all attempts of proof. In general, and perhaps not surpris-
ingly, much less is known about these non-holomorphic Maass forms than their
cuspidal relatives.

In particular, for Maass forms away from eigenvalue 1/4, no connection
with Galois theory has been shown, and it is widely believed (from numerical
experiments) that these forms do not have any properties related to algebraic
numbers.
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